Cargando…

Study on the Variations of Key Groups and Thermal Characteristic Parameters during Coal Secondary Spontaneous Combustion

[Image: see text] To investigate the effect of preoxidation on the secondary spontaneous combustion of coal, the changes in the key groups and thermal characteristic parameters in coal after preoxidation were investigated through Fourier transform infrared spectroscopy (FTIR), laser thermal conducti...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jiangbo, Zhang, Tianjun, Pan, Hongyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893756/
https://www.ncbi.nlm.nih.gov/pubmed/36743016
http://dx.doi.org/10.1021/acsomega.2c07281
Descripción
Sumario:[Image: see text] To investigate the effect of preoxidation on the secondary spontaneous combustion of coal, the changes in the key groups and thermal characteristic parameters in coal after preoxidation were investigated through Fourier transform infrared spectroscopy (FTIR), laser thermal conductivity, and thermogravimetric experiments. Results showed that the aromatic hydrocarbons in coal gradually decrease with the rise in the preoxidation temperature, the aliphatic hydrocarbons increase and then decrease, the −C–O– group gradually decreases, and the −C=O and −COO– group content slowly increases. Preoxidation promotes the breakdown of aromatic hydrocarbons and the oxidation of oxygen-containing functional groups in coal. Meanwhile, the thermal diffusivity of coal decreases after preoxidation, while the specific heat capacity and thermal conductivity increase and then decrease. The results of the thermogravimetric analysis indicate that preoxidation changes the characteristic temperature, but it does not change the process of spontaneous combustion. The spontaneous combustion process of raw and preoxidized coals can be divided into three stages: water evaporation, oxygen adsorption, and combustion. Further, the apparent activation energy increases and then decreases with a rise in the preoxidation temperature during the moisture evaporation stage, increases during the oxygen adsorption stage, and decreases during the combustion stage.