Cargando…
GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier
As new drug targets, human microbes are proven to be closely related to human health. Effective computational methods for inferring potential microbe-drug associations can provide a useful complement to conventional experimental methods and will facilitate drug research and development. However, it...
Autores principales: | Ma, Qing, Tan, Yaqin, Wang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893988/ https://www.ncbi.nlm.nih.gov/pubmed/36732704 http://dx.doi.org/10.1186/s12859-023-05158-7 |
Ejemplares similares
-
GSAMDA: a computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder
por: Tan, Yaqin, et al.
Publicado: (2022) -
Automatic Modulation Classification Based on CNN-Transformer Graph Neural Network
por: Wang, Dong, et al.
Publicado: (2023) -
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022) -
Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy
por: Shi, Kai, et al.
Publicado: (2023) -
CNN-Based Classifier as an Offline Trigger for the CREDO Experiment
por: Piekarczyk, Marcin, et al.
Publicado: (2021)