Cargando…
Evaluating the utility of deep learning for predicting therapeutic response in diabetic eye disease
PURPOSE: Deep learning (DL) is a technique explored within ophthalmology that requires large datasets to distinguish feature representations with high diagnostic performance. There is a need for developing DL approaches to predict therapeutic response, but completed clinical trial datasets are limit...
Autores principales: | Dong, Vincent, Sevgi, Duriye Damla, Kar, Sudeshna Sil, Srivastava, Sunil K., Ehlers, Justis P., Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894083/ https://www.ncbi.nlm.nih.gov/pubmed/36744216 http://dx.doi.org/10.3389/fopht.2022.852107 |
Ejemplares similares
-
Quantitative Imaging Biomarkers in Age-Related Macular Degeneration and Diabetic Eye Disease: A Step Closer to Precision Medicine
por: Kalra, Gagan, et al.
Publicado: (2021) -
Characterization of Ultra-Widefield Angiographic Vascular Features in Diabetic Retinopathy with Automated Severity Classification
por: Sevgi, Duriye Damla, et al.
Publicado: (2021) -
Computational Imaging Biomarker Correlation with Intraocular Cytokine Expression in Diabetic Macular Edema: Radiomics Insights from the IMAGINE Study
por: Kar, Sudeshna Sil, et al.
Publicado: (2022) -
Predictive Assessment of Quantitative Ultra-Widefield Angiographic Features for Future Need for Anti-VEGF Therapy in Diabetic Eye Disease
por: Jiang, Alice C., et al.
Publicado: (2022) -
Automated Quality Assessment and Image Selection of Ultra-Widefield Fluorescein Angiography Images through Deep Learning
por: Li, Henry H., et al.
Publicado: (2020)