Cargando…

Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform

Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains...

Descripción completa

Detalles Bibliográficos
Autores principales: Chavez, Benjamin G., Srinivasan, Prashanth, Glockzin, Kayla, Kim, Neill, Montero Estrada, Olga, Jirschitzka, Jan, Rowden, Gage, Shao, Jonathan, Meinhardt, Lyndel, Smolke, Christina D., D’Auria, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894180/
https://www.ncbi.nlm.nih.gov/pubmed/36442128
http://dx.doi.org/10.1073/pnas.2215372119
_version_ 1784881688507056128
author Chavez, Benjamin G.
Srinivasan, Prashanth
Glockzin, Kayla
Kim, Neill
Montero Estrada, Olga
Jirschitzka, Jan
Rowden, Gage
Shao, Jonathan
Meinhardt, Lyndel
Smolke, Christina D.
D’Auria, John C.
author_facet Chavez, Benjamin G.
Srinivasan, Prashanth
Glockzin, Kayla
Kim, Neill
Montero Estrada, Olga
Jirschitzka, Jan
Rowden, Gage
Shao, Jonathan
Meinhardt, Lyndel
Smolke, Christina D.
D’Auria, John C.
author_sort Chavez, Benjamin G.
collection PubMed
description Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway.
format Online
Article
Text
id pubmed-9894180
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-98941802023-05-28 Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform Chavez, Benjamin G. Srinivasan, Prashanth Glockzin, Kayla Kim, Neill Montero Estrada, Olga Jirschitzka, Jan Rowden, Gage Shao, Jonathan Meinhardt, Lyndel Smolke, Christina D. D’Auria, John C. Proc Natl Acad Sci U S A Biological Sciences Tropane alkaloids (TAs) are heterocyclic nitrogenous metabolites found across seven orders of angiosperms, including Malpighiales (Erythroxylaceae) and Solanales (Solanaceae). Despite the well-established euphorigenic properties of Erythroxylaceae TAs like cocaine, their biosynthetic pathway remains incomplete. Using yeast as a screening platform, we identified and characterized the missing steps of TA biosynthesis in Erythroxylum coca. We first characterize putative E. coca polyamine synthase- and amine oxidase-like enzymes in vitro, in yeast, and in planta to show that the first tropane ring closure in Erythroxylaceae occurs via bifunctional spermidine synthase/N-methyltransferases and both flavin- and copper-dependent amine oxidases. We next identify a SABATH family methyltransferase responsible for the 2-carbomethoxy moiety characteristic of Erythroxylaceae TAs and demonstrate that its coexpression with methylecgonone reductase in yeast engineered to express the Solanaceae TA pathway enables the production of a hybrid TA with structural features of both lineages. Finally, we use clustering analysis of Erythroxylum transcriptome datasets to discover a cytochrome P450 of the CYP81A family responsible for the second tropane ring closure in Erythroxylaceae, and demonstrate the function of the core coca TA pathway in vivo via reconstruction and de novo biosynthesis of methylecgonine in yeast. Collectively, our results provide strong evidence that TA biosynthesis in Erythroxylaceae and Solanaceae is polyphyletic and that independent recruitment of unique biosynthetic mechanisms and enzyme classes occurred at nearly every step in the evolution of this pathway. National Academy of Sciences 2022-11-28 2022-12-06 /pmc/articles/PMC9894180/ /pubmed/36442128 http://dx.doi.org/10.1073/pnas.2215372119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Chavez, Benjamin G.
Srinivasan, Prashanth
Glockzin, Kayla
Kim, Neill
Montero Estrada, Olga
Jirschitzka, Jan
Rowden, Gage
Shao, Jonathan
Meinhardt, Lyndel
Smolke, Christina D.
D’Auria, John C.
Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform
title Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform
title_full Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform
title_fullStr Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform
title_full_unstemmed Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform
title_short Elucidation of tropane alkaloid biosynthesis in Erythroxylum coca using a microbial pathway discovery platform
title_sort elucidation of tropane alkaloid biosynthesis in erythroxylum coca using a microbial pathway discovery platform
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894180/
https://www.ncbi.nlm.nih.gov/pubmed/36442128
http://dx.doi.org/10.1073/pnas.2215372119
work_keys_str_mv AT chavezbenjaming elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT srinivasanprashanth elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT glockzinkayla elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT kimneill elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT monteroestradaolga elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT jirschitzkajan elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT rowdengage elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT shaojonathan elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT meinhardtlyndel elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT smolkechristinad elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform
AT dauriajohnc elucidationoftropanealkaloidbiosynthesisinerythroxylumcocausingamicrobialpathwaydiscoveryplatform