Cargando…
The molecular basis for pore pattern morphogenesis in diatom silica
Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894196/ https://www.ncbi.nlm.nih.gov/pubmed/36459651 http://dx.doi.org/10.1073/pnas.2211549119 |
_version_ | 1784881691619229696 |
---|---|
author | Heintze, Christoph Babenko, Iaroslav Zackova Suchanova, Jirina Skeffington, Alastair Friedrich, Benjamin M. Kröger, Nils |
author_facet | Heintze, Christoph Babenko, Iaroslav Zackova Suchanova, Jirina Skeffington, Alastair Friedrich, Benjamin M. Kröger, Nils |
author_sort | Heintze, Christoph |
collection | PubMed |
description | Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein–protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid–liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology. |
format | Online Article Text |
id | pubmed-9894196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-98941962023-06-02 The molecular basis for pore pattern morphogenesis in diatom silica Heintze, Christoph Babenko, Iaroslav Zackova Suchanova, Jirina Skeffington, Alastair Friedrich, Benjamin M. Kröger, Nils Proc Natl Acad Sci U S A Biological Sciences Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein–protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid–liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology. National Academy of Sciences 2022-12-02 2022-12-06 /pmc/articles/PMC9894196/ /pubmed/36459651 http://dx.doi.org/10.1073/pnas.2211549119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Heintze, Christoph Babenko, Iaroslav Zackova Suchanova, Jirina Skeffington, Alastair Friedrich, Benjamin M. Kröger, Nils The molecular basis for pore pattern morphogenesis in diatom silica |
title | The molecular basis for pore pattern morphogenesis in diatom silica |
title_full | The molecular basis for pore pattern morphogenesis in diatom silica |
title_fullStr | The molecular basis for pore pattern morphogenesis in diatom silica |
title_full_unstemmed | The molecular basis for pore pattern morphogenesis in diatom silica |
title_short | The molecular basis for pore pattern morphogenesis in diatom silica |
title_sort | molecular basis for pore pattern morphogenesis in diatom silica |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894196/ https://www.ncbi.nlm.nih.gov/pubmed/36459651 http://dx.doi.org/10.1073/pnas.2211549119 |
work_keys_str_mv | AT heintzechristoph themolecularbasisforporepatternmorphogenesisindiatomsilica AT babenkoiaroslav themolecularbasisforporepatternmorphogenesisindiatomsilica AT zackovasuchanovajirina themolecularbasisforporepatternmorphogenesisindiatomsilica AT skeffingtonalastair themolecularbasisforporepatternmorphogenesisindiatomsilica AT friedrichbenjaminm themolecularbasisforporepatternmorphogenesisindiatomsilica AT krogernils themolecularbasisforporepatternmorphogenesisindiatomsilica AT heintzechristoph molecularbasisforporepatternmorphogenesisindiatomsilica AT babenkoiaroslav molecularbasisforporepatternmorphogenesisindiatomsilica AT zackovasuchanovajirina molecularbasisforporepatternmorphogenesisindiatomsilica AT skeffingtonalastair molecularbasisforporepatternmorphogenesisindiatomsilica AT friedrichbenjaminm molecularbasisforporepatternmorphogenesisindiatomsilica AT krogernils molecularbasisforporepatternmorphogenesisindiatomsilica |