Cargando…

The molecular basis for pore pattern morphogenesis in diatom silica

Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these...

Descripción completa

Detalles Bibliográficos
Autores principales: Heintze, Christoph, Babenko, Iaroslav, Zackova Suchanova, Jirina, Skeffington, Alastair, Friedrich, Benjamin M., Kröger, Nils
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894196/
https://www.ncbi.nlm.nih.gov/pubmed/36459651
http://dx.doi.org/10.1073/pnas.2211549119
_version_ 1784881691619229696
author Heintze, Christoph
Babenko, Iaroslav
Zackova Suchanova, Jirina
Skeffington, Alastair
Friedrich, Benjamin M.
Kröger, Nils
author_facet Heintze, Christoph
Babenko, Iaroslav
Zackova Suchanova, Jirina
Skeffington, Alastair
Friedrich, Benjamin M.
Kröger, Nils
author_sort Heintze, Christoph
collection PubMed
description Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein–protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid–liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology.
format Online
Article
Text
id pubmed-9894196
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-98941962023-06-02 The molecular basis for pore pattern morphogenesis in diatom silica Heintze, Christoph Babenko, Iaroslav Zackova Suchanova, Jirina Skeffington, Alastair Friedrich, Benjamin M. Kröger, Nils Proc Natl Acad Sci U S A Biological Sciences Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein–protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid–liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology. National Academy of Sciences 2022-12-02 2022-12-06 /pmc/articles/PMC9894196/ /pubmed/36459651 http://dx.doi.org/10.1073/pnas.2211549119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Heintze, Christoph
Babenko, Iaroslav
Zackova Suchanova, Jirina
Skeffington, Alastair
Friedrich, Benjamin M.
Kröger, Nils
The molecular basis for pore pattern morphogenesis in diatom silica
title The molecular basis for pore pattern morphogenesis in diatom silica
title_full The molecular basis for pore pattern morphogenesis in diatom silica
title_fullStr The molecular basis for pore pattern morphogenesis in diatom silica
title_full_unstemmed The molecular basis for pore pattern morphogenesis in diatom silica
title_short The molecular basis for pore pattern morphogenesis in diatom silica
title_sort molecular basis for pore pattern morphogenesis in diatom silica
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894196/
https://www.ncbi.nlm.nih.gov/pubmed/36459651
http://dx.doi.org/10.1073/pnas.2211549119
work_keys_str_mv AT heintzechristoph themolecularbasisforporepatternmorphogenesisindiatomsilica
AT babenkoiaroslav themolecularbasisforporepatternmorphogenesisindiatomsilica
AT zackovasuchanovajirina themolecularbasisforporepatternmorphogenesisindiatomsilica
AT skeffingtonalastair themolecularbasisforporepatternmorphogenesisindiatomsilica
AT friedrichbenjaminm themolecularbasisforporepatternmorphogenesisindiatomsilica
AT krogernils themolecularbasisforporepatternmorphogenesisindiatomsilica
AT heintzechristoph molecularbasisforporepatternmorphogenesisindiatomsilica
AT babenkoiaroslav molecularbasisforporepatternmorphogenesisindiatomsilica
AT zackovasuchanovajirina molecularbasisforporepatternmorphogenesisindiatomsilica
AT skeffingtonalastair molecularbasisforporepatternmorphogenesisindiatomsilica
AT friedrichbenjaminm molecularbasisforporepatternmorphogenesisindiatomsilica
AT krogernils molecularbasisforporepatternmorphogenesisindiatomsilica