Cargando…
Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface
From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894211/ https://www.ncbi.nlm.nih.gov/pubmed/36459653 http://dx.doi.org/10.1073/pnas.2209955119 |
_version_ | 1784881695335383040 |
---|---|
author | Mahanta, Sushanta Vallejo-Ramirez, Pedro Karedla, Narain Puczkarski, Paweł Krishnan, Madhavi |
author_facet | Mahanta, Sushanta Vallejo-Ramirez, Pedro Karedla, Narain Puczkarski, Paweł Krishnan, Madhavi |
author_sort | Mahanta, Sushanta |
collection | PubMed |
description | From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as well as to monitor the spatial heterogeneity and temporal variation thereof, has been a long-standing challenge. Here, we describe an optical microscopy-based approach to probe the surface charge distribution of a range of materials, including inorganic oxide, polymer, and polyelectrolyte films, in contact with a fluid. The method relies on optical visualization of the electrical repulsion between diffusing charged probe molecules and the unknown surface to be characterized. Rapid image-based measurements enable us to further determine isoelectric points of the material as well as properties of its ionizable chemical groups. We further demonstrate the ability to optically monitor chemically triggered surface charge changes with millisecond time resolution. Finally, we present a scanning-surface probe technique capable of diffraction-limited imaging of spatial heterogeneities in chemical composition and charge over large areas. This technique will enable facile characterization of the solid–liquid interface with wide-ranging relevance across application areas from biology to engineering. |
format | Online Article Text |
id | pubmed-9894211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-98942112023-02-03 Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface Mahanta, Sushanta Vallejo-Ramirez, Pedro Karedla, Narain Puczkarski, Paweł Krishnan, Madhavi Proc Natl Acad Sci U S A Physical Sciences From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as well as to monitor the spatial heterogeneity and temporal variation thereof, has been a long-standing challenge. Here, we describe an optical microscopy-based approach to probe the surface charge distribution of a range of materials, including inorganic oxide, polymer, and polyelectrolyte films, in contact with a fluid. The method relies on optical visualization of the electrical repulsion between diffusing charged probe molecules and the unknown surface to be characterized. Rapid image-based measurements enable us to further determine isoelectric points of the material as well as properties of its ionizable chemical groups. We further demonstrate the ability to optically monitor chemically triggered surface charge changes with millisecond time resolution. Finally, we present a scanning-surface probe technique capable of diffraction-limited imaging of spatial heterogeneities in chemical composition and charge over large areas. This technique will enable facile characterization of the solid–liquid interface with wide-ranging relevance across application areas from biology to engineering. National Academy of Sciences 2022-12-02 2022-12-06 /pmc/articles/PMC9894211/ /pubmed/36459653 http://dx.doi.org/10.1073/pnas.2209955119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Physical Sciences Mahanta, Sushanta Vallejo-Ramirez, Pedro Karedla, Narain Puczkarski, Paweł Krishnan, Madhavi Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
title | Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
title_full | Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
title_fullStr | Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
title_full_unstemmed | Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
title_short | Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
title_sort | wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894211/ https://www.ncbi.nlm.nih.gov/pubmed/36459653 http://dx.doi.org/10.1073/pnas.2209955119 |
work_keys_str_mv | AT mahantasushanta widefieldopticalimagingofelectricalchargeandchemicalreactionsatthesolidliquidinterface AT vallejoramirezpedro widefieldopticalimagingofelectricalchargeandchemicalreactionsatthesolidliquidinterface AT karedlanarain widefieldopticalimagingofelectricalchargeandchemicalreactionsatthesolidliquidinterface AT puczkarskipaweł widefieldopticalimagingofelectricalchargeandchemicalreactionsatthesolidliquidinterface AT krishnanmadhavi widefieldopticalimagingofelectricalchargeandchemicalreactionsatthesolidliquidinterface |