Cargando…
Topology, vorticity, and limit cycle in a stabilized Kuramoto–Sivashinsky equation
A noisy stabilized Kuramoto–Sivashinsky equation is analyzed by stochastic decomposition. For values of the control parameter for which periodic stationary patterns exist, the dynamics can be decomposed into diffusive and transverse parts which act on a stochastic potential. The relative positions o...
Autores principales: | Chen, Yong-Cong, Shi, Chunxiao, Kosterlitz, J. M., Zhu, Xiaomei, Ao, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894259/ https://www.ncbi.nlm.nih.gov/pubmed/36459639 http://dx.doi.org/10.1073/pnas.2211359119 |
Ejemplares similares
-
Analyticity for the Kuramoto-Sivashinsky equation
por: Collet, P, et al.
Publicado: (1993) -
Nonlinear dynamics of a dispersive anisotropic Kuramoto–Sivashinsky equation in two space dimensions
por: Tomlin, R. J., et al.
Publicado: (2018) -
Evolutionary Kuramoto dynamics
por: Tripp, Elizabeth A., et al.
Publicado: (2022) -
Topologically crafted spatiotemporal vortices in acoustics
por: Zhang, Hongliang, et al.
Publicado: (2023) -
Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices
por: Parente, Vincenzo, et al.
Publicado: (2014)