Cargando…

Minimal clinically-important differences for the ‘Liverpool Osteoarthritis in Dogs’ (LOAD) and the ‘Canine Orthopedic Index’ (COI) client-reported outcomes measures

Client-reported outcomes measures (CROMs) have been previously validated for the evaluation of canine osteoarthritis. A published systematic review indicated that the ‘Liverpool Osteoarthritis in Dogs’ (LOAD) and the ‘Canine Orthopedic Index’ (COI) can be recommended for use in dogs with osteoarthri...

Descripción completa

Detalles Bibliográficos
Autores principales: Innes, John F., Morton, Mark A., Lascelles, B. Duncan X.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894389/
https://www.ncbi.nlm.nih.gov/pubmed/36730152
http://dx.doi.org/10.1371/journal.pone.0280912
Descripción
Sumario:Client-reported outcomes measures (CROMs) have been previously validated for the evaluation of canine osteoarthritis. A published systematic review indicated that the ‘Liverpool Osteoarthritis in Dogs’ (LOAD) and the ‘Canine Orthopedic Index’ (COI) can be recommended for use in dogs with osteoarthritis; these CROMs have also been used in the context of measuring surgical outcomes of dogs with orthopaedic conditions. However, the minimal clinically-important differences (MCIDs) for these CROMs have not been investigated. Such estimates would be useful for investigators and regulators so that these CROMs can be used in clinical trials. Data from the RCVS Knowledge Canine Cruciate Registry were extracted, and baseline and 6 week follow-up data on dogs that had received surgery for cranial cruciate ligament rupture were used to make estimates of MCIDs using distribution-based and anchor-based methods. Data from 125 dogs were categorised based on the anchor question and LOAD and COI scores analysed accordingly. The four anchor-based methods provided a range of MCIDs for each CROM (1 to 8.8 for LOAD and 3.5 to 17.6 for COI). In the two different distribution-based methods, the MCIDs for LOAD ranged from 1.5 (effect size) to 2.4 (standard error of measurement) and the effect size method yielded a result of 2.2 for COI. The results showed that the value of the MCIDs depended on the method that was applied. Receiver operator characteristic curves provided areas under the curve (AUCs) greater than 0.7, which indicated that the cut-off point was acceptable; LOAD had the greater AUC at 0.867. In summary, the authors currently recommend a MCID of ‘4’ for LOAD and ‘14’ for COI although further work in other clinical contexts (such as osteoarthritis associated with chronic pain) is required to add confidence to these estimates. For the first time, we have provided estimates for MCIDs for these two CROMs which will facilitate sample size estimates in future clinical studies that use these CROMs as outcomes measures.