Cargando…
MIRN: A multi-interest retrieval network with sequence-to-interest EM routing
Vector-based retrieval have been widely adopted to process online users’ diverse interests for recommendations. However, most of them utilize a single vector to represent user multiple interests (UMI), inevitably impairing the accuracy and diversity of item retrieval. In addition, existing work ofte...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894450/ https://www.ncbi.nlm.nih.gov/pubmed/36730174 http://dx.doi.org/10.1371/journal.pone.0281275 |
_version_ | 1784881742667055104 |
---|---|
author | Zhang, Xiliang Liu, Jin Chang, Siwei Gong, Peizhu Wu, Zhongdai Han, Bing |
author_facet | Zhang, Xiliang Liu, Jin Chang, Siwei Gong, Peizhu Wu, Zhongdai Han, Bing |
author_sort | Zhang, Xiliang |
collection | PubMed |
description | Vector-based retrieval have been widely adopted to process online users’ diverse interests for recommendations. However, most of them utilize a single vector to represent user multiple interests (UMI), inevitably impairing the accuracy and diversity of item retrieval. In addition, existing work often does not take into account the scale and speed of the model, and high-dimensional user representation vectors need high computation cost, leading to inefficient item retrieval. In this paper, we propose a novel lightweight multi-interest retrieval network (MIRN) by incorporating sequence-to-interest Expectation Maximization (EM) routing to deal with users’ multiple interests. By leveraging representation ability of the Capsule network, we design a multi-interest representation learning module that clusters multiple Capsule vectors from the user’s behavior sequence to represent each of their interests respectively. In addition, we introduce a composite capsule clustering strategy for the Capsule network framework to reduce the scale of the network model. Furthermore, a Capsule-aware module incorporating an attention mechanism has been developed to guide model training by adaptively learning multiple Capsule vectors of user representations. The experimental results demonstrate MIRN outperforms the state-of-the-art approaches for item retrieval and gains significant improvements in terms of metric evaluations. |
format | Online Article Text |
id | pubmed-9894450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98944502023-02-03 MIRN: A multi-interest retrieval network with sequence-to-interest EM routing Zhang, Xiliang Liu, Jin Chang, Siwei Gong, Peizhu Wu, Zhongdai Han, Bing PLoS One Research Article Vector-based retrieval have been widely adopted to process online users’ diverse interests for recommendations. However, most of them utilize a single vector to represent user multiple interests (UMI), inevitably impairing the accuracy and diversity of item retrieval. In addition, existing work often does not take into account the scale and speed of the model, and high-dimensional user representation vectors need high computation cost, leading to inefficient item retrieval. In this paper, we propose a novel lightweight multi-interest retrieval network (MIRN) by incorporating sequence-to-interest Expectation Maximization (EM) routing to deal with users’ multiple interests. By leveraging representation ability of the Capsule network, we design a multi-interest representation learning module that clusters multiple Capsule vectors from the user’s behavior sequence to represent each of their interests respectively. In addition, we introduce a composite capsule clustering strategy for the Capsule network framework to reduce the scale of the network model. Furthermore, a Capsule-aware module incorporating an attention mechanism has been developed to guide model training by adaptively learning multiple Capsule vectors of user representations. The experimental results demonstrate MIRN outperforms the state-of-the-art approaches for item retrieval and gains significant improvements in terms of metric evaluations. Public Library of Science 2023-02-02 /pmc/articles/PMC9894450/ /pubmed/36730174 http://dx.doi.org/10.1371/journal.pone.0281275 Text en © 2023 Zhang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhang, Xiliang Liu, Jin Chang, Siwei Gong, Peizhu Wu, Zhongdai Han, Bing MIRN: A multi-interest retrieval network with sequence-to-interest EM routing |
title | MIRN: A multi-interest retrieval network with sequence-to-interest EM routing |
title_full | MIRN: A multi-interest retrieval network with sequence-to-interest EM routing |
title_fullStr | MIRN: A multi-interest retrieval network with sequence-to-interest EM routing |
title_full_unstemmed | MIRN: A multi-interest retrieval network with sequence-to-interest EM routing |
title_short | MIRN: A multi-interest retrieval network with sequence-to-interest EM routing |
title_sort | mirn: a multi-interest retrieval network with sequence-to-interest em routing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894450/ https://www.ncbi.nlm.nih.gov/pubmed/36730174 http://dx.doi.org/10.1371/journal.pone.0281275 |
work_keys_str_mv | AT zhangxiliang mirnamultiinterestretrievalnetworkwithsequencetointerestemrouting AT liujin mirnamultiinterestretrievalnetworkwithsequencetointerestemrouting AT changsiwei mirnamultiinterestretrievalnetworkwithsequencetointerestemrouting AT gongpeizhu mirnamultiinterestretrievalnetworkwithsequencetointerestemrouting AT wuzhongdai mirnamultiinterestretrievalnetworkwithsequencetointerestemrouting AT hanbing mirnamultiinterestretrievalnetworkwithsequencetointerestemrouting |