Cargando…

Recent development of machine learning models for the prediction of drug-drug interactions

Polypharmacy, the co-administration of multiple drugs, has become an area of concern as the elderly population grows and an unexpected infection, such as COVID-19 pandemic, keeps emerging. However, it is very costly and time-consuming to experimentally examine the pharmacological effects of polyphar...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Eujin, Jeon, Junhyeok, Kim, Hyun Uk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894510/
https://www.ncbi.nlm.nih.gov/pubmed/36748027
http://dx.doi.org/10.1007/s11814-023-1377-3
Descripción
Sumario:Polypharmacy, the co-administration of multiple drugs, has become an area of concern as the elderly population grows and an unexpected infection, such as COVID-19 pandemic, keeps emerging. However, it is very costly and time-consuming to experimentally examine the pharmacological effects of polypharmacy. To address this challenge, machine learning models that predict drug-drug interactions (DDIs) have actively been developed in recent years. In particular, the growing volume of drug datasets and the advances in machine learning have facilitated the model development. In this regard, this review discusses the DDI-predicting machine learning models that have been developed since 2018. Our discussion focuses on dataset sources used to develop the models, featurization approaches of molecular structures and biological information, and types of DDI prediction outcomes from the models. Finally, we make suggestions for research opportunities in this field.