Cargando…
Recent development of machine learning models for the prediction of drug-drug interactions
Polypharmacy, the co-administration of multiple drugs, has become an area of concern as the elderly population grows and an unexpected infection, such as COVID-19 pandemic, keeps emerging. However, it is very costly and time-consuming to experimentally examine the pharmacological effects of polyphar...
Autores principales: | Hong, Eujin, Jeon, Junhyeok, Kim, Hyun Uk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894510/ https://www.ncbi.nlm.nih.gov/pubmed/36748027 http://dx.doi.org/10.1007/s11814-023-1377-3 |
Ejemplares similares
-
Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information
por: Jang, Ha Young, et al.
Publicado: (2022) -
A machine learning framework for predicting drug–drug interactions
por: Mei, Suyu, et al.
Publicado: (2021) -
Machine Learning for Drug-Target Interaction Prediction
por: Chen, Ruolan, et al.
Publicado: (2018) -
Genetically Engineered Mouse Models for Drug Development and Preclinical Trials
por: Lee, Ho
Publicado: (2014) -
Models for Predicting Drug Absorption From Oral Lipid-Based Formulations
por: Alskär, Linda C., et al.
Publicado: (2015)