Cargando…

Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes With Ringed Sideroblasts

SF3B1 mutations, which occur in 20% of patients with myelodysplastic syndromes (MDS), are the hallmarks of a specific MDS subtype, MDS with ringed sideroblasts (MDS-RS), which is characterized by the accumulation of erythroid precursors in the bone marrow and primarily affects the elderly population...

Descripción completa

Detalles Bibliográficos
Autores principales: Adema, Vera, Ma, Feiyang, Kanagal-Shamanna, Rashmi, Thongon, Natthakan, Montalban-Bravo, Guillermo, Yang, Hui, Peslak, Scott A., Wang, Feng, Acha, Pamela, Sole, Francesc, Lockyer, Pamela, Cassari, Margherita, Maciejewski, Jaroslaw P., Visconte, Valeria, Gañán-Gómez, Irene, Song, Yuanbin, Bueso-Ramos, Carlos, Pellegrini, Matteo, Tan, Tuyet M., Bejar, Rafael, Carew, Jennifer S., Halene, Stephanie, Santini, Valeria, Al-Atrash, Gheath, Clise-Dwyer, Karen, Garcia-Manero, Guillermo, Blobel, Gerd A., Colla, Simona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894566/
https://www.ncbi.nlm.nih.gov/pubmed/35926182
http://dx.doi.org/10.1158/2643-3230.BCD-21-0220
Descripción
Sumario:SF3B1 mutations, which occur in 20% of patients with myelodysplastic syndromes (MDS), are the hallmarks of a specific MDS subtype, MDS with ringed sideroblasts (MDS-RS), which is characterized by the accumulation of erythroid precursors in the bone marrow and primarily affects the elderly population. Here, using single-cell technologies and functional validation studies of primary SF3B1-mutant MDS-RS samples, we show that SF3B1 mutations lead to the activation of the EIF2AK1 pathway in response to heme deficiency and that targeting this pathway rescues aberrant erythroid differentiation and enables the red blood cell maturation of MDS-RS erythroblasts. These data support the development of EIF2AK1 inhibitors to overcome transfusion dependency in patients with SF3B1-mutant MDS-RS with impaired red blood cell production. SIGNIFICANCE: MDS-RS are characterized by significant anemia. Patients with MDS-RS die from a shortage of red blood cells and the side effects of iron overload due to their constant need for transfusions. Our study has implications for the development of therapies to achieve long-lasting hematologic responses. This article is highlighted in the In This Issue feature, p. 476