Cargando…

Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons

Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking...

Descripción completa

Detalles Bibliográficos
Autores principales: Harikesh, Padinhare Cholakkal, Yang, Chi-Yuan, Wu, Han-Yan, Zhang, Silan, Donahue, Mary J., Caravaca, April S., Huang, Jun-Da, Olofsson, Peder S., Berggren, Magnus, Tu, Deyu, Fabiano, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894750/
https://www.ncbi.nlm.nih.gov/pubmed/36635590
http://dx.doi.org/10.1038/s41563-022-01450-8
_version_ 1784881803957370880
author Harikesh, Padinhare Cholakkal
Yang, Chi-Yuan
Wu, Han-Yan
Zhang, Silan
Donahue, Mary J.
Caravaca, April S.
Huang, Jun-Da
Olofsson, Peder S.
Berggren, Magnus
Tu, Deyu
Fabiano, Simone
author_facet Harikesh, Padinhare Cholakkal
Yang, Chi-Yuan
Wu, Han-Yan
Zhang, Silan
Donahue, Mary J.
Caravaca, April S.
Huang, Jun-Da
Olofsson, Peder S.
Berggren, Magnus
Tu, Deyu
Fabiano, Simone
author_sort Harikesh, Padinhare Cholakkal
collection PubMed
description Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion–electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.
format Online
Article
Text
id pubmed-9894750
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98947502023-02-04 Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons Harikesh, Padinhare Cholakkal Yang, Chi-Yuan Wu, Han-Yan Zhang, Silan Donahue, Mary J. Caravaca, April S. Huang, Jun-Da Olofsson, Peder S. Berggren, Magnus Tu, Deyu Fabiano, Simone Nat Mater Article Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion–electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies. Nature Publishing Group UK 2023-01-12 2023 /pmc/articles/PMC9894750/ /pubmed/36635590 http://dx.doi.org/10.1038/s41563-022-01450-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Harikesh, Padinhare Cholakkal
Yang, Chi-Yuan
Wu, Han-Yan
Zhang, Silan
Donahue, Mary J.
Caravaca, April S.
Huang, Jun-Da
Olofsson, Peder S.
Berggren, Magnus
Tu, Deyu
Fabiano, Simone
Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
title Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
title_full Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
title_fullStr Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
title_full_unstemmed Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
title_short Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
title_sort ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894750/
https://www.ncbi.nlm.nih.gov/pubmed/36635590
http://dx.doi.org/10.1038/s41563-022-01450-8
work_keys_str_mv AT harikeshpadinharecholakkal iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT yangchiyuan iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT wuhanyan iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT zhangsilan iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT donahuemaryj iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT caravacaaprils iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT huangjunda iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT olofssonpeders iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT berggrenmagnus iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT tudeyu iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons
AT fabianosimone iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons