Cargando…
Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons
Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894750/ https://www.ncbi.nlm.nih.gov/pubmed/36635590 http://dx.doi.org/10.1038/s41563-022-01450-8 |
_version_ | 1784881803957370880 |
---|---|
author | Harikesh, Padinhare Cholakkal Yang, Chi-Yuan Wu, Han-Yan Zhang, Silan Donahue, Mary J. Caravaca, April S. Huang, Jun-Da Olofsson, Peder S. Berggren, Magnus Tu, Deyu Fabiano, Simone |
author_facet | Harikesh, Padinhare Cholakkal Yang, Chi-Yuan Wu, Han-Yan Zhang, Silan Donahue, Mary J. Caravaca, April S. Huang, Jun-Da Olofsson, Peder S. Berggren, Magnus Tu, Deyu Fabiano, Simone |
author_sort | Harikesh, Padinhare Cholakkal |
collection | PubMed |
description | Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion–electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies. |
format | Online Article Text |
id | pubmed-9894750 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98947502023-02-04 Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons Harikesh, Padinhare Cholakkal Yang, Chi-Yuan Wu, Han-Yan Zhang, Silan Donahue, Mary J. Caravaca, April S. Huang, Jun-Da Olofsson, Peder S. Berggren, Magnus Tu, Deyu Fabiano, Simone Nat Mater Article Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion–electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies. Nature Publishing Group UK 2023-01-12 2023 /pmc/articles/PMC9894750/ /pubmed/36635590 http://dx.doi.org/10.1038/s41563-022-01450-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Harikesh, Padinhare Cholakkal Yang, Chi-Yuan Wu, Han-Yan Zhang, Silan Donahue, Mary J. Caravaca, April S. Huang, Jun-Da Olofsson, Peder S. Berggren, Magnus Tu, Deyu Fabiano, Simone Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
title | Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
title_full | Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
title_fullStr | Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
title_full_unstemmed | Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
title_short | Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
title_sort | ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894750/ https://www.ncbi.nlm.nih.gov/pubmed/36635590 http://dx.doi.org/10.1038/s41563-022-01450-8 |
work_keys_str_mv | AT harikeshpadinharecholakkal iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT yangchiyuan iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT wuhanyan iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT zhangsilan iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT donahuemaryj iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT caravacaaprils iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT huangjunda iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT olofssonpeders iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT berggrenmagnus iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT tudeyu iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons AT fabianosimone iontunableantiambipolarityinmixedionelectronconductingpolymersenablesbiorealisticorganicelectrochemicalneurons |