Cargando…
Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction
Cardiovascular disease (CVD), the leading cause of death globally, is associated with complicated underlying risk factors. We develop an artificial intelligence model to identify CVD using multimodal data, including clinical risk factors and fundus photographs from the Samsung Medical Center (SMC) f...
Autores principales: | Lee, Yeong Chan, Cha, Jiho, Shim, Injeong, Park, Woong-Yang, Kang, Se Woong, Lim, Dong Hui, Won, Hong-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894867/ https://www.ncbi.nlm.nih.gov/pubmed/36732671 http://dx.doi.org/10.1038/s41746-023-00748-4 |
Ejemplares similares
-
Multimodal Imaging of the Fundus
por: Hayashi, Atsushi, et al.
Publicado: (2013) -
Performance of Deep Transfer Learning for Detecting Abnormal Fundus Images
por: Yu, Yan, et al.
Publicado: (2020) -
Prediction of visual impairment in retinitis pigmentosa using deep learning and multimodal fundus images
por: Liu, Tin Yan Alvin, et al.
Publicado: (2023) -
Nanophthalmos: An Update on the Biological Parameters and Fundus Abnormalities
por: Yang, Ning, et al.
Publicado: (2021) -
Multimodal Fundus Imaging of Sodium Iodate-Treated Mice Informs RPE Susceptibility and Origins of Increased Fundus Autofluorescence
por: Zhao, Jin, et al.
Publicado: (2017)