Cargando…
Toward robust and scalable deep spiking reinforcement learning
Deep reinforcement learning (DRL) combines reinforcement learning algorithms with deep neural networks (DNNs). Spiking neural networks (SNNs) have been shown to be a biologically plausible and energy efficient alternative to DNNs. Since the introduction of surrogate gradient approaches that allowed...
Autores principales: | Akl, Mahmoud, Ergene, Deniz, Walter, Florian, Knoll, Alois |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894879/ https://www.ncbi.nlm.nih.gov/pubmed/36742191 http://dx.doi.org/10.3389/fnbot.2022.1075647 |
Ejemplares similares
-
Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints
por: Chen, Lienhung, et al.
Publicado: (2022) -
Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization
por: Panda, Priyadarshini, et al.
Publicado: (2020) -
A human-centered safe robot reinforcement learning framework with interactive behaviors
por: Gu, Shangding, et al.
Publicado: (2023) -
Supervised Learning in SNN via Reward-Modulated Spike-Timing-Dependent Plasticity for a Target Reaching Vehicle
por: Bing, Zhenshan, et al.
Publicado: (2019) -
Back-Propagation Learning in Deep Spike-By-Spike Networks
por: Rotermund, David, et al.
Publicado: (2019)