Cargando…
How good is an explanation?
How good is an explanation and when is one explanation better than another? In this paper, I address these questions by exploring probabilistic measures of explanatory power in order to defend a particular Bayesian account of explanatory goodness. Critical to this discussion is a distinction between...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895044/ https://www.ncbi.nlm.nih.gov/pubmed/36748080 http://dx.doi.org/10.1007/s11229-022-04025-x |
Sumario: | How good is an explanation and when is one explanation better than another? In this paper, I address these questions by exploring probabilistic measures of explanatory power in order to defend a particular Bayesian account of explanatory goodness. Critical to this discussion is a distinction between weak and strong measures of explanatory power due to Good (Br J Philos Sci 19:123–143, 1968). In particular, I argue that if one is interested in the overall goodness of an explanation, an appropriate balance needs to be struck between the weak explanatory power and the complexity of a hypothesis. In light of this, I provide a new defence of a strong measure proposed by Good by providing new derivations of it, comparing it with other measures and exploring its connection with information, confirmation and explanatory virtues. Furthermore, Good really presented a family of strong measures, whereas I draw on a complexity criterion that favours a specific measure and hence provides a more precise way to quantify explanatory goodness. |
---|