Cargando…
Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines
Machine learning is considered to be one of the most promising applications of quantum computing. Therefore, the search for quantum advantage of the quantum analogues of machine learning models is a key research goal. Here, we show that variational quantum classifiers and support vector machines wit...
Autores principales: | Jäger, Jonas, Krems, Roman V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895068/ https://www.ncbi.nlm.nih.gov/pubmed/36732519 http://dx.doi.org/10.1038/s41467-023-36144-5 |
Ejemplares similares
-
Variational quantum support vector machine based on [Formula: see text] matrix expansion and variational universal-quantum-state generator
por: Ezawa, Motohiko
Publicado: (2022) -
Classifying DNA repair genes by kernel-based support vector machines
por: Jiang, Hao, et al.
Publicado: (2011) -
Boosted Binary Quantum Classifier via Graphical Kernel
por: Li, Yuan, et al.
Publicado: (2023) -
Variational quantum approximate support vector machine with inference transfer
por: Park, Siheon, et al.
Publicado: (2023) -
Quantum machine learning beyond kernel methods
por: Jerbi, Sofiene, et al.
Publicado: (2023)