Cargando…
Estimation of cell lineages in tumors from spatial transcriptomics data
Spatial transcriptomics (ST) technology through in situ capturing has enabled topographical gene expression profiling of tumor tissues. However, each capturing spot may contain diverse immune and malignant cells, with different cell densities across tissue regions. Cell type deconvolution in tumor S...
Autores principales: | Ru, Beibei, Huang, Jinlin, Zhang, Yu, Aldape, Kenneth, Jiang, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895078/ https://www.ncbi.nlm.nih.gov/pubmed/36732531 http://dx.doi.org/10.1038/s41467-023-36062-6 |
Ejemplares similares
-
Discover immunotherapy biomarkers from single-cell cytometry data
por: Ru, Beibei, et al.
Publicado: (2021) -
Inference on spatial heterogeneity in tumor microenvironment using spatial transcriptomics data
por: Biswas, Antara, et al.
Publicado: (2022) -
Immune cell deconvolution of bulk DNA methylation data reveals an association with methylation class, key somatic alterations, and cell state in glial/glioneuronal tumors
por: Singh, Omkar, et al.
Publicado: (2021) -
Novel insights from spatial transcriptome analysis in solid tumors
por: Du, Jun, et al.
Publicado: (2023) -
Detection of differentially expressed genes in spatial transcriptomics data by spatial analysis of spatial transcriptomics: A novel method based on spatial statistics
por: Qiu, Zhihua, et al.
Publicado: (2022)