Cargando…
PGAGP: Predicting pathogenic genes based on adaptive network embedding algorithm
The study of disease-gene associations is an important topic in the field of computational biology. The accumulation of massive amounts of biomedical data provides new possibilities for exploring potential relations between diseases and genes through computational strategy, but how to extract valuab...
Autores principales: | Zhang, Yan, Xiang, Ju, Tang, Liang, Yang, Jialiang, Li, Jianming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895109/ https://www.ncbi.nlm.nih.gov/pubmed/36744177 http://dx.doi.org/10.3389/fgene.2022.1087784 |
Ejemplares similares
-
Identifying Breast Cancer-Related Genes Based on a Novel Computational Framework Involving KEGG Pathways and PPI Network Modularity
por: Zhang, Yan, et al.
Publicado: (2021) -
Pathogenic Gene Prediction Algorithm Based on Heterogeneous Information Fusion
por: Wang, Chunyu, et al.
Publicado: (2020) -
RobustTree: An adaptive, robust PCA algorithm for embedded tree structure recovery from single-cell sequencing data
por: Chen, Ziwei, et al.
Publicado: (2023) -
A Predictive Based Regression Algorithm for Gene Network Selection
por: Guerrier, Stéphane, et al.
Publicado: (2016) -
Predicting lncRNA–Protein Interactions by Heterogenous Network Embedding
por: Zhao, Guoqing, et al.
Publicado: (2022)