Cargando…

Recent advances of antioxidant low-dimensional carbon materials for biomedical applications

As the primary cause of many tissue damage and diseases, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well known to be extremely harmful to a variety of biological components in cells including lipids, proteins and DNA. Numerous antioxidative nanomaterials have been artifici...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Nan, Ding, Zhen, Zhang, Jin, Cai, Yanting, Bao, Xingfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895372/
https://www.ncbi.nlm.nih.gov/pubmed/36741744
http://dx.doi.org/10.3389/fbioe.2023.1121477
Descripción
Sumario:As the primary cause of many tissue damage and diseases, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well known to be extremely harmful to a variety of biological components in cells including lipids, proteins and DNA. Numerous antioxidative nanomaterials have been artificially designed and rationally synthesized to protect cells from the oxidative damage caused by reactive oxygen species/reactive nitrogen species. Recent studies demonstrate that low dimensional carbon antioxidative nanomaterials have received a lot of attention owing to their tiny nanoscales and unique physicochemical property. As a result, a brief overview of recent advancements in antioxidant low-dimensional carbon materials is provided. Typically, carbon nanomaterials are classified according to their nanostructure dimensions, which are zero-dimension, one-dimension, and two-dimension. Last but not least, the challenges and perspectives of these high-performance low-dimensional materials in biomedical fields and further clinical usages are discussed as well.