Cargando…
Dynamical behaviors, circuit design, and synchronization of a novel symmetric chaotic system with coexisting attractors
In this paper, we introduce a novel three-dimension chaotic system with strange characteristic by applying construction of a 3D chaotic circuit method. Multiple equilibria and abundant coexisting attractors exist in this system. A mathematical model is developed and detailed stability analyses for e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895447/ https://www.ncbi.nlm.nih.gov/pubmed/36732538 http://dx.doi.org/10.1038/s41598-023-28509-z |
Sumario: | In this paper, we introduce a novel three-dimension chaotic system with strange characteristic by applying construction of a 3D chaotic circuit method. Multiple equilibria and abundant coexisting attractors exist in this system. A mathematical model is developed and detailed stability analyses for equilibrium points are executed with obtaining significant results of the period-doubling bifurcation patterns confirmed by phase plane plots and Lyapunov exponent spectra. By varying the initial value and unique controlled parameter, the double-scroll chaotic attractor is broken up into a pair of symmetric singular attractors. Then, the local basins of attraction are investigated concerning the initial condition. Next, the circuit synthesis results generated by Multisim simulation tool validate the self-excitation characteristics of this system. Finally, the feedback control technique is used to study difference synchronization of this system. Main conclusions prove the validity and reliability of difference synchronization. |
---|