Cargando…
Protective Role of the Toll-Like Receptor 5 Agonist KMRC011 against Murine Colitis Induced by Citrobacter rodentium and Dextran Sulfate Sodium
This study aimed to identify the therapeutic ability of a novel toll-like receptor (TLR) 5 agonist, KMRC011, on ulcerative colitis induced by Citrobacter rodentium and dextran sulfate sodium in a C57BL/6N mouse model. Ulcerative colitis was induced in the mice by the oral administration of 1% dextra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Microbiology and Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9895994/ https://www.ncbi.nlm.nih.gov/pubmed/36457188 http://dx.doi.org/10.4014/jmb.2209.09048 |
Sumario: | This study aimed to identify the therapeutic ability of a novel toll-like receptor (TLR) 5 agonist, KMRC011, on ulcerative colitis induced by Citrobacter rodentium and dextran sulfate sodium in a C57BL/6N mouse model. Ulcerative colitis was induced in the mice by the oral administration of 1% dextran sulfate sodium in sterile drinking water for seven days ad libitum, followed by C. rodentium infection on the seventh day by intra-gastric administration (DSS-CT group). KMRC011 was administered intramuscularly at both 24 h and 15 min before (Treatment 1 group), and at both 15 min and 24 h after (Treatment 2 group) the C. rodentium infection. The length of the large intestine and histopathological counts were significantly greater and mucosal thickness was significantly thinner in the Treatment 1 group compared to the DSS-CT and Treatment 2 groups. Il-6 and Il-10 mRNA expression levels were upregulated, while Ifn-γ and Tnf-α mRNA expression levels were significantly downregulated in the Treatment 1 group, compared to the DSS-CT group. NF-κB p65 expression level was elevated due to ulcerative colitis in the DSS-CT group, but was significantly downregulated in the Treatment 1 group. Overall, KMRC011 showed protective effects against murine colitis by inhibiting NF-κB signaling. |
---|