Cargando…
Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review
INTRODUCTION: Observational studies in health-related research often aim to answer causal questions. Missing data are common in these studies and often occur in multiple variables, such as the exposure, outcome and/or variables used to control for confounding. The standard classification of missing...
Autores principales: | Mainzer, Rheanna, Moreno-Betancur, Margarita, Nguyen, Cattram, Simpson, Julie, Carlin, John, Lee, Katherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896184/ https://www.ncbi.nlm.nih.gov/pubmed/36725096 http://dx.doi.org/10.1136/bmjopen-2022-065576 |
Ejemplares similares
-
Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome
por: Middleton, Melissa, et al.
Publicado: (2022) -
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
por: Moreno-Betancur, Margarita, et al.
Publicado: (2018) -
Practical strategies for handling breakdown of multiple imputation procedures
por: Nguyen, Cattram D., et al.
Publicado: (2021) -
Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2019) -
Multiple imputation approaches for handling incomplete three‐level data with time‐varying cluster‐memberships
por: Wijesuriya, Rushani, et al.
Publicado: (2022)