Cargando…
Regularization approaches in clinical biostatistics: A review of methods and their applications
A range of regularization approaches have been proposed in the data sciences to overcome overfitting, to exploit sparsity or to improve prediction. Using a broad definition of regularization, namely controlling model complexity by adding information in order to solve ill-posed problems or to prevent...
Autores principales: | Friedrich, Sarah, Groll, Andreas, Ickstadt, Katja, Kneib, Thomas, Pauly, Markus, Rahnenführer, Jörg, Friede, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896544/ https://www.ncbi.nlm.nih.gov/pubmed/36384320 http://dx.doi.org/10.1177/09622802221133557 |
Ejemplares similares
-
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2021) -
Correction to: Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2022) -
Frontiers of biostatistical methods and applications in clinical oncology
por: Matsui, Shigeyuki, et al.
Publicado: (2017) -
Biostatistical methods /
Publicado: (2002) -
Causal inference methods for small non-randomized studies: Methods and an application in COVID-19
por: Friedrich, Sarah, et al.
Publicado: (2020)