Cargando…

Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries

[Image: see text] Electrolytes, consisting of salts, solvents, and additives, must form a stable solid electrolyte interphase (SEI) to ensure the performance and durability of lithium(Li)-ion batteries. However, the electric double layer (EDL) structure near charged surfaces is still unsolved, despi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qisheng, McDowell, Matthew T., Qi, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896563/
https://www.ncbi.nlm.nih.gov/pubmed/36689617
http://dx.doi.org/10.1021/jacs.2c11807
_version_ 1784882078889803776
author Wu, Qisheng
McDowell, Matthew T.
Qi, Yue
author_facet Wu, Qisheng
McDowell, Matthew T.
Qi, Yue
author_sort Wu, Qisheng
collection PubMed
description [Image: see text] Electrolytes, consisting of salts, solvents, and additives, must form a stable solid electrolyte interphase (SEI) to ensure the performance and durability of lithium(Li)-ion batteries. However, the electric double layer (EDL) structure near charged surfaces is still unsolved, despite its importance in dictating the species being reduced for SEI formation near a negative electrode. In this work, a newly developed model was used to illustrate the effect of EDL on SEI formation in two essential electrolytes, the carbonate-based electrolyte for Li-ion batteries and the ether-based electrolyte for batteries with Li-metal anodes. Both electrolytes have fluoroethylene carbonate (FEC) as a common additive to form the beneficial F-containing SEI component (e.g., LiF). However, the role of FEC drastically differs in these electrolytes. FEC is an effective SEI modifier for the carbonate-based electrolyte by being the only F-containing species entering the EDL and being reduced, as the anion (PF(6)(–)) will not enter the EDL. For the ether-based electrolyte, both the anion (TFSI(–)) and FEC can enter the EDL and be reduced. The competition of the two species within the EDL due to the surface charge and temperature leads to a unique temperature effect observed in prior experiments: the FEC additive is more effective in modulating SEI components at a low temperature (−40 °C) than at room temperature (20 °C) in the ether-based electrolyte. These collective quantitative agreements with experiments emphasize the importance of incorporating the effect of the EDL in multicomponent electrolyte reduction reactions in simulations/experiments to predict/control the formation of the SEI layer.
format Online
Article
Text
id pubmed-9896563
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-98965632023-02-04 Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries Wu, Qisheng McDowell, Matthew T. Qi, Yue J Am Chem Soc [Image: see text] Electrolytes, consisting of salts, solvents, and additives, must form a stable solid electrolyte interphase (SEI) to ensure the performance and durability of lithium(Li)-ion batteries. However, the electric double layer (EDL) structure near charged surfaces is still unsolved, despite its importance in dictating the species being reduced for SEI formation near a negative electrode. In this work, a newly developed model was used to illustrate the effect of EDL on SEI formation in two essential electrolytes, the carbonate-based electrolyte for Li-ion batteries and the ether-based electrolyte for batteries with Li-metal anodes. Both electrolytes have fluoroethylene carbonate (FEC) as a common additive to form the beneficial F-containing SEI component (e.g., LiF). However, the role of FEC drastically differs in these electrolytes. FEC is an effective SEI modifier for the carbonate-based electrolyte by being the only F-containing species entering the EDL and being reduced, as the anion (PF(6)(–)) will not enter the EDL. For the ether-based electrolyte, both the anion (TFSI(–)) and FEC can enter the EDL and be reduced. The competition of the two species within the EDL due to the surface charge and temperature leads to a unique temperature effect observed in prior experiments: the FEC additive is more effective in modulating SEI components at a low temperature (−40 °C) than at room temperature (20 °C) in the ether-based electrolyte. These collective quantitative agreements with experiments emphasize the importance of incorporating the effect of the EDL in multicomponent electrolyte reduction reactions in simulations/experiments to predict/control the formation of the SEI layer. American Chemical Society 2023-01-23 /pmc/articles/PMC9896563/ /pubmed/36689617 http://dx.doi.org/10.1021/jacs.2c11807 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Wu, Qisheng
McDowell, Matthew T.
Qi, Yue
Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries
title Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries
title_full Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries
title_fullStr Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries
title_full_unstemmed Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries
title_short Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries
title_sort effect of the electric double layer (edl) in multicomponent electrolyte reduction and solid electrolyte interphase (sei) formation in lithium batteries
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896563/
https://www.ncbi.nlm.nih.gov/pubmed/36689617
http://dx.doi.org/10.1021/jacs.2c11807
work_keys_str_mv AT wuqisheng effectoftheelectricdoublelayeredlinmulticomponentelectrolytereductionandsolidelectrolyteinterphaseseiformationinlithiumbatteries
AT mcdowellmatthewt effectoftheelectricdoublelayeredlinmulticomponentelectrolytereductionandsolidelectrolyteinterphaseseiformationinlithiumbatteries
AT qiyue effectoftheelectricdoublelayeredlinmulticomponentelectrolytereductionandsolidelectrolyteinterphaseseiformationinlithiumbatteries