Cargando…
Models and data of AMPlify: a deep learning tool for antimicrobial peptide prediction
OBJECTIVES: Antibiotic resistance is a rising global threat to human health and is prompting researchers to seek effective alternatives to conventional antibiotics, which include antimicrobial peptides (AMPs). Recently, we have reported AMPlify, an attentive deep learning model for predicting AMPs i...
Autores principales: | Li, Chenkai, Warren, René L., Birol, Inanc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896668/ https://www.ncbi.nlm.nih.gov/pubmed/36732807 http://dx.doi.org/10.1186/s13104-023-06279-1 |
Ejemplares similares
-
AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens
por: Li, Chenkai, et al.
Publicado: (2022) -
Trans-NanoSim characterizes and simulates nanopore RNA-sequencing data
por: Hafezqorani, Saber, et al.
Publicado: (2020) -
Characterization and simulation of metagenomic nanopore sequencing data with Meta-NanoSim
por: Yang, Chen, et al.
Publicado: (2023) -
Associating Biological Activity and Predicted Structure of Antimicrobial Peptides from Amphibians and Insects
por: Richter, Amelia, et al.
Publicado: (2022) -
NanoSim: nanopore sequence read simulator based on statistical characterization
por: Yang, Chen, et al.
Publicado: (2017)