Cargando…

A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis

PURPOSE: Foveoschisis involves the pathologic splitting of retinal layers at the fovea, which may occur congenitally in X-linked retinoschisis (XLRS) or as an acquired complication of myopia. XLRS is attributed to functional loss of the retinal adhesion protein retinoschisin 1 (RS1), but the pathoph...

Descripción completa

Detalles Bibliográficos
Autores principales: Sin, Tzu-Ni, Kim, Sangbae, Li, Yumei, Wang, Jun, Chen, Rui, Chung, Sook Hyun, Kim, Soohyun, Casanova, M. Isabel, Park, Sangwan, Smit-McBride, Zeljka, Sun, Ning, Pomerantz, Ori, Roberts, Jeffrey A., Guan, Bin, Hufnagel, Robert B., Moshiri, Ala, Thomasy, Sara M., Sieving, Paul A., Yiu, Glenn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896856/
https://www.ncbi.nlm.nih.gov/pubmed/36689233
http://dx.doi.org/10.1167/iovs.64.1.18
_version_ 1784882136172462080
author Sin, Tzu-Ni
Kim, Sangbae
Li, Yumei
Wang, Jun
Chen, Rui
Chung, Sook Hyun
Kim, Soohyun
Casanova, M. Isabel
Park, Sangwan
Smit-McBride, Zeljka
Sun, Ning
Pomerantz, Ori
Roberts, Jeffrey A.
Guan, Bin
Hufnagel, Robert B.
Moshiri, Ala
Thomasy, Sara M.
Sieving, Paul A.
Yiu, Glenn
author_facet Sin, Tzu-Ni
Kim, Sangbae
Li, Yumei
Wang, Jun
Chen, Rui
Chung, Sook Hyun
Kim, Soohyun
Casanova, M. Isabel
Park, Sangwan
Smit-McBride, Zeljka
Sun, Ning
Pomerantz, Ori
Roberts, Jeffrey A.
Guan, Bin
Hufnagel, Robert B.
Moshiri, Ala
Thomasy, Sara M.
Sieving, Paul A.
Yiu, Glenn
author_sort Sin, Tzu-Ni
collection PubMed
description PURPOSE: Foveoschisis involves the pathologic splitting of retinal layers at the fovea, which may occur congenitally in X-linked retinoschisis (XLRS) or as an acquired complication of myopia. XLRS is attributed to functional loss of the retinal adhesion protein retinoschisin 1 (RS1), but the pathophysiology of myopic foveoschisis is unclear due to the lack of animal models. Here, we characterized a novel nonhuman primate model of myopic foveoschisis through clinical examination and multimodal imaging followed by morphologic, cellular, and transcriptional profiling of retinal tissues and genetic analysis. METHODS: We identified a rhesus macaque with behavioral and anatomic features of myopic foveoschisis, and monitored disease progression over 14 months by fundus photography, fluorescein angiography, and optical coherence tomography (OCT). After necropsy, we evaluated anatomic and cellular changes by immunohistochemistry and transcriptomic changes using single-nuclei RNA-sequencing (snRNA-seq). Finally, we performed Sanger and whole exome sequencing with focus on the RS1 gene. RESULTS: Affected eyes demonstrated posterior hyaloid traction and progressive splitting of the outer plexiform layer on OCT. Immunohistochemistry showed increased GFAP expression in Müller glia and loss of ramified Iba-1+ microglia, suggesting macro- and microglial activation with minimal photoreceptor alterations. SnRNA-seq revealed gene expression changes predominantly in cones and retinal ganglion cells involving chromatin modification, suggestive of cellular stress at the fovea. No defects in the RS1 gene or its expression were detected. CONCLUSIONS: This nonhuman primate model of foveoschisis reveals insights into how acquired myopic traction leads to phenotypically similar morphologic and cellular changes as congenital XLRS without alterations in RS1.
format Online
Article
Text
id pubmed-9896856
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-98968562023-02-04 A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis Sin, Tzu-Ni Kim, Sangbae Li, Yumei Wang, Jun Chen, Rui Chung, Sook Hyun Kim, Soohyun Casanova, M. Isabel Park, Sangwan Smit-McBride, Zeljka Sun, Ning Pomerantz, Ori Roberts, Jeffrey A. Guan, Bin Hufnagel, Robert B. Moshiri, Ala Thomasy, Sara M. Sieving, Paul A. Yiu, Glenn Invest Ophthalmol Vis Sci Retina PURPOSE: Foveoschisis involves the pathologic splitting of retinal layers at the fovea, which may occur congenitally in X-linked retinoschisis (XLRS) or as an acquired complication of myopia. XLRS is attributed to functional loss of the retinal adhesion protein retinoschisin 1 (RS1), but the pathophysiology of myopic foveoschisis is unclear due to the lack of animal models. Here, we characterized a novel nonhuman primate model of myopic foveoschisis through clinical examination and multimodal imaging followed by morphologic, cellular, and transcriptional profiling of retinal tissues and genetic analysis. METHODS: We identified a rhesus macaque with behavioral and anatomic features of myopic foveoschisis, and monitored disease progression over 14 months by fundus photography, fluorescein angiography, and optical coherence tomography (OCT). After necropsy, we evaluated anatomic and cellular changes by immunohistochemistry and transcriptomic changes using single-nuclei RNA-sequencing (snRNA-seq). Finally, we performed Sanger and whole exome sequencing with focus on the RS1 gene. RESULTS: Affected eyes demonstrated posterior hyaloid traction and progressive splitting of the outer plexiform layer on OCT. Immunohistochemistry showed increased GFAP expression in Müller glia and loss of ramified Iba-1+ microglia, suggesting macro- and microglial activation with minimal photoreceptor alterations. SnRNA-seq revealed gene expression changes predominantly in cones and retinal ganglion cells involving chromatin modification, suggestive of cellular stress at the fovea. No defects in the RS1 gene or its expression were detected. CONCLUSIONS: This nonhuman primate model of foveoschisis reveals insights into how acquired myopic traction leads to phenotypically similar morphologic and cellular changes as congenital XLRS without alterations in RS1. The Association for Research in Vision and Ophthalmology 2023-01-23 /pmc/articles/PMC9896856/ /pubmed/36689233 http://dx.doi.org/10.1167/iovs.64.1.18 Text en Copyright 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Retina
Sin, Tzu-Ni
Kim, Sangbae
Li, Yumei
Wang, Jun
Chen, Rui
Chung, Sook Hyun
Kim, Soohyun
Casanova, M. Isabel
Park, Sangwan
Smit-McBride, Zeljka
Sun, Ning
Pomerantz, Ori
Roberts, Jeffrey A.
Guan, Bin
Hufnagel, Robert B.
Moshiri, Ala
Thomasy, Sara M.
Sieving, Paul A.
Yiu, Glenn
A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis
title A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis
title_full A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis
title_fullStr A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis
title_full_unstemmed A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis
title_short A Spontaneous Nonhuman Primate Model of Myopic Foveoschisis
title_sort spontaneous nonhuman primate model of myopic foveoschisis
topic Retina
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896856/
https://www.ncbi.nlm.nih.gov/pubmed/36689233
http://dx.doi.org/10.1167/iovs.64.1.18
work_keys_str_mv AT sintzuni aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT kimsangbae aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT liyumei aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT wangjun aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT chenrui aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT chungsookhyun aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT kimsoohyun aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT casanovamisabel aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT parksangwan aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT smitmcbridezeljka aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT sunning aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT pomerantzori aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT robertsjeffreya aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT guanbin aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT hufnagelrobertb aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT moshiriala aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT thomasysaram aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT sievingpaula aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT yiuglenn aspontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT sintzuni spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT kimsangbae spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT liyumei spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT wangjun spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT chenrui spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT chungsookhyun spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT kimsoohyun spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT casanovamisabel spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT parksangwan spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT smitmcbridezeljka spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT sunning spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT pomerantzori spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT robertsjeffreya spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT guanbin spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT hufnagelrobertb spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT moshiriala spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT thomasysaram spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT sievingpaula spontaneousnonhumanprimatemodelofmyopicfoveoschisis
AT yiuglenn spontaneousnonhumanprimatemodelofmyopicfoveoschisis