Cargando…
Towards better Data Science to address racial bias and health equity
Data Science can be used to address racial health inequities. However, a wealth of scholarship has shown that there are many ethical challenges with using Data Science to address social problems. To develop a Data Science focused on racial health equity, we need the data, methods, application, and c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896874/ https://www.ncbi.nlm.nih.gov/pubmed/36741434 http://dx.doi.org/10.1093/pnasnexus/pgac120 |
Sumario: | Data Science can be used to address racial health inequities. However, a wealth of scholarship has shown that there are many ethical challenges with using Data Science to address social problems. To develop a Data Science focused on racial health equity, we need the data, methods, application, and communication approaches to be antiracist and focused on serving minoritized groups that have long-standing worse health indicators than majority groups. In this perspective, we propose eight tenets that could shape a Data Science for Racial Health Equity research framework. |
---|