Cargando…
Improved autoregressive integrated moving average model for COVID-19 prediction by using statistical significance and clustering techniques
PURPOSE: The COVID-19 pandemic has affected more than 192 countries. The condition results in a respiratory illness (e.g., influenza) with signs and symptoms such as cold, cough, fever, and breathing difficulties. Predicting new instances of COVID-19 is always a challenging task. METHODS: This study...
Autores principales: | Ilu, Saratu Yusuf, Prasad, Rajesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896886/ https://www.ncbi.nlm.nih.gov/pubmed/36776910 http://dx.doi.org/10.1016/j.heliyon.2023.e13483 |
Ejemplares similares
-
Prediction of COVID-19 using long short-term memory by integrating principal component analysis and clustering techniques
por: Ilu, Saratu Yusuf, et al.
Publicado: (2022) -
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021) -
An Autoregressive Integrated Moving Average Model for Predicting Varicella Outbreaks — China, 2019
por: Wang, Miaomiao, et al.
Publicado: (2023) -
Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China
por: Lin, Yilan, et al.
Publicado: (2015) -
A fractionally integrated autoregressive moving average approach to forecasting tourism demand
por: Chu, Fong-Lin
Publicado: (2008)