Cargando…
Analysis and Forecasting of Area Under Cultivation of Rice in India: Univariate Time Series Approach
This study uses three distinct models to analyse a univariate time series of data: Holt's exponential smoothing model, the autoregressive integrated moving average (ARIMA) model, and the neural network autoregression (NNAR) model. The effectiveness of each model is assessed using in-sample fore...
Autores principales: | Annamalai, Niveditha, Johnson, Amala |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897162/ https://www.ncbi.nlm.nih.gov/pubmed/36778724 http://dx.doi.org/10.1007/s42979-022-01604-0 |
Ejemplares similares
-
Forecasting the Romanian Unemployment Rate in Time of Health Crisis—A Univariate vs. Multivariate Time Series Approach
por: Davidescu, Adriana AnaMaria, et al.
Publicado: (2021) -
Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China
por: Zhang, Yong, et al.
Publicado: (2017) -
Spectral analysis for univariate time series
por: Percival, Donald B, et al.
Publicado: (2020) -
Comparing Short-Term Univariate and Multivariate Time-Series Forecasting Models in Infectious Disease Outbreak
por: Assad, Daniel Bouzon Nagem, et al.
Publicado: (2022) -
An Intelligent IoT-Cloud-Based Air Pollution Forecasting Model Using Univariate Time-Series Analysis
por: Ansari, Manzoor, et al.
Publicado: (2023)