Cargando…

Coupling dual metal active sites and low-solvation architecture toward high-performance aqueous ammonium-ion batteries

Aqueous rechargeable ammonium-ion batteries (AIBs) possess the characteristics of safety, low cost, environmental friendliness, and fast diffusion kinetics. However, their energy density is often limited due to the low specific capacity of cathode materials and narrow electrochemical stability windo...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Lingyu, Bi, Songshan, Yang, Min, Tie, Zhiwei, Zhang, Minghui, Niu, Zhiqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897483/
https://www.ncbi.nlm.nih.gov/pubmed/36472961
http://dx.doi.org/10.1073/pnas.2214545119
Descripción
Sumario:Aqueous rechargeable ammonium-ion batteries (AIBs) possess the characteristics of safety, low cost, environmental friendliness, and fast diffusion kinetics. However, their energy density is often limited due to the low specific capacity of cathode materials and narrow electrochemical stability windows of electrolytes. Herein, high-performance aqueous AIBs were designed by coupling Fe-substituted manganese-based Prussian blue analog (FeMnHCF) cathodes and highly concentrated NH(4)CF(3)SO(3) electrolytes. In FeMnHCF, Mn(3+)/Mn(2+)-N redox reaction at high potential was introduced, and two metal active redox species of Mn and Fe were achieved. To match such FeMnHCF cathodes, highly concentrated NH(4)CF(3)SO(3) electrolyte was further developed, where NH(4)(+) ion displays low-solvation structure because of the increased coordination number of CF(3)SO(3)(−) anions. Furthermore, the water molecules are confined by NH(4)(+) and CF(3)SO(3)(−) ions in their solvation sheath, leading to weak interaction between water molecules and thus effectively extending the voltage window of electrolyte. Consequently, the FeMnHCF electrodes present high reversibility during the charge/discharge process. Moreover, owing to a small amount of free water in concentrated electrolyte, the dissolution of FeMnHCF is also inhibited. As a result, the assembled aqueous AIBs exhibit enhanced energy density, excellent rate capability, and stable cycling behavior. This work provides a creative route to construct high-performance aqueous AIBs.