Cargando…
scAEGAN: Unification of single-cell genomics data by adversarial learning of latent space correspondences
Recent progress in Single-Cell Genomics has produced different library protocols and techniques for molecular profiling. We formulate a unifying, data-driven, integrative, and predictive methodology for different libraries, samples, and paired-unpaired data modalities. Our design of scAEGAN includes...
Autores principales: | Khan, Sumeer Ahmad, Lehmann, Robert, Martinez-de-Morentin, Xabier, Maillo, Alberto, Lagani, Vincenzo, Kiani, Narsis A., Gomez-Cabrero, David, Tegner, Jesper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897517/ https://www.ncbi.nlm.nih.gov/pubmed/36735690 http://dx.doi.org/10.1371/journal.pone.0281315 |
Ejemplares similares
-
Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations †
por: Zenil, Hector, et al.
Publicado: (2018) -
A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference
por: Tegnér, Jesper, et al.
Publicado: (2016) -
A Review of Graph and Network Complexity from an Algorithmic Information Perspective
por: Zenil, Hector, et al.
Publicado: (2018) -
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
Conditional Disease Development extracted from Longitudinal Health Care Cohort Data using Layered Network Construction
por: Kannan, Venkateshan, et al.
Publicado: (2016)