Cargando…
Observational constraints on the process and products of Martian serpentinization
The alteration of olivine-rich rocks to serpentine minerals, (hydr)oxides, and aqueous hydrogen through serpentinization is long thought to have influenced the distribution of habitable environments on early Mars and the evolution of the early Martian hydrosphere and atmosphere. Nevertheless, the pl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897658/ https://www.ncbi.nlm.nih.gov/pubmed/36735795 http://dx.doi.org/10.1126/sciadv.add8472 |
_version_ | 1784882298063159296 |
---|---|
author | Tutolo, Benjamin M. Tosca, Nicholas J. |
author_facet | Tutolo, Benjamin M. Tosca, Nicholas J. |
author_sort | Tutolo, Benjamin M. |
collection | PubMed |
description | The alteration of olivine-rich rocks to serpentine minerals, (hydr)oxides, and aqueous hydrogen through serpentinization is long thought to have influenced the distribution of habitable environments on early Mars and the evolution of the early Martian hydrosphere and atmosphere. Nevertheless, the planetary importance of Martian serpentinization has remained a matter of debate. To constrain the process and products of Martian serpentinization, we studied serpentinized iron-rich olivines from the 1.1-billion-year Duluth Complex. These data indicate that serpentinized iron-rich olivine would have been accompanied by a fivefold increase in hydrogen production relative to serpentinized terrestrial mantle peridotites. In contrast to previous expectations, this style of serpentinization yields hisingerite as the dominant iron serpentine mineral at comparatively low temperature and pH, consistent with meteorite mineralogy and in situ rover data. The widespread occurrence of oxidized iron-bearing phyllosilicates in highly magnetized regions of the Martian crust supports the hypothesis that serpentinization was more pervasive on early Mars than currently estimated. |
format | Online Article Text |
id | pubmed-9897658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98976582023-02-08 Observational constraints on the process and products of Martian serpentinization Tutolo, Benjamin M. Tosca, Nicholas J. Sci Adv Earth, Environmental, Ecological, and Space Sciences The alteration of olivine-rich rocks to serpentine minerals, (hydr)oxides, and aqueous hydrogen through serpentinization is long thought to have influenced the distribution of habitable environments on early Mars and the evolution of the early Martian hydrosphere and atmosphere. Nevertheless, the planetary importance of Martian serpentinization has remained a matter of debate. To constrain the process and products of Martian serpentinization, we studied serpentinized iron-rich olivines from the 1.1-billion-year Duluth Complex. These data indicate that serpentinized iron-rich olivine would have been accompanied by a fivefold increase in hydrogen production relative to serpentinized terrestrial mantle peridotites. In contrast to previous expectations, this style of serpentinization yields hisingerite as the dominant iron serpentine mineral at comparatively low temperature and pH, consistent with meteorite mineralogy and in situ rover data. The widespread occurrence of oxidized iron-bearing phyllosilicates in highly magnetized regions of the Martian crust supports the hypothesis that serpentinization was more pervasive on early Mars than currently estimated. American Association for the Advancement of Science 2023-02-03 /pmc/articles/PMC9897658/ /pubmed/36735795 http://dx.doi.org/10.1126/sciadv.add8472 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Earth, Environmental, Ecological, and Space Sciences Tutolo, Benjamin M. Tosca, Nicholas J. Observational constraints on the process and products of Martian serpentinization |
title | Observational constraints on the process and products of Martian serpentinization |
title_full | Observational constraints on the process and products of Martian serpentinization |
title_fullStr | Observational constraints on the process and products of Martian serpentinization |
title_full_unstemmed | Observational constraints on the process and products of Martian serpentinization |
title_short | Observational constraints on the process and products of Martian serpentinization |
title_sort | observational constraints on the process and products of martian serpentinization |
topic | Earth, Environmental, Ecological, and Space Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897658/ https://www.ncbi.nlm.nih.gov/pubmed/36735795 http://dx.doi.org/10.1126/sciadv.add8472 |
work_keys_str_mv | AT tutolobenjaminm observationalconstraintsontheprocessandproductsofmartianserpentinization AT toscanicholasj observationalconstraintsontheprocessandproductsofmartianserpentinization |