Cargando…
Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897659/ https://www.ncbi.nlm.nih.gov/pubmed/36735779 http://dx.doi.org/10.1126/sciadv.ade7078 |
_version_ | 1784882298319011840 |
---|---|
author | Luo, Huajie Liu, Hui Huang, Houbing Song, Yu Tucker, Matthew G. Sun, Zheng Yao, Yonghao Gao, Baitao Ren, Yang Tang, Mingxue Qi, He Deng, Shiqing Zhang, Shujun Chen, Jun |
author_facet | Luo, Huajie Liu, Hui Huang, Houbing Song, Yu Tucker, Matthew G. Sun, Zheng Yao, Yonghao Gao, Baitao Ren, Yang Tang, Mingxue Qi, He Deng, Shiqing Zhang, Shujun Chen, Jun |
author_sort | Luo, Huajie |
collection | PubMed |
description | Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi(0.5)Na(0.5)TiO(3) (BNT)–based ceramics. The incorporation of the hypothetical perovskite BaAlO(2.5) with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain. |
format | Online Article Text |
id | pubmed-9897659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98976592023-02-08 Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition Luo, Huajie Liu, Hui Huang, Houbing Song, Yu Tucker, Matthew G. Sun, Zheng Yao, Yonghao Gao, Baitao Ren, Yang Tang, Mingxue Qi, He Deng, Shiqing Zhang, Shujun Chen, Jun Sci Adv Physical and Materials Sciences Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi(0.5)Na(0.5)TiO(3) (BNT)–based ceramics. The incorporation of the hypothetical perovskite BaAlO(2.5) with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain. American Association for the Advancement of Science 2023-02-03 /pmc/articles/PMC9897659/ /pubmed/36735779 http://dx.doi.org/10.1126/sciadv.ade7078 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Luo, Huajie Liu, Hui Huang, Houbing Song, Yu Tucker, Matthew G. Sun, Zheng Yao, Yonghao Gao, Baitao Ren, Yang Tang, Mingxue Qi, He Deng, Shiqing Zhang, Shujun Chen, Jun Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
title | Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
title_full | Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
title_fullStr | Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
title_full_unstemmed | Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
title_short | Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
title_sort | achieving giant electrostrain of above 1% in (bi,na)tio(3)-based lead-free piezoelectrics via introducing oxygen-defect composition |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897659/ https://www.ncbi.nlm.nih.gov/pubmed/36735779 http://dx.doi.org/10.1126/sciadv.ade7078 |
work_keys_str_mv | AT luohuajie achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT liuhui achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT huanghoubing achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT songyu achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT tuckermatthewg achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT sunzheng achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT yaoyonghao achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT gaobaitao achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT renyang achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT tangmingxue achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT qihe achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT dengshiqing achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT zhangshujun achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition AT chenjun achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition |