Cargando…

Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition

Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Huajie, Liu, Hui, Huang, Houbing, Song, Yu, Tucker, Matthew G., Sun, Zheng, Yao, Yonghao, Gao, Baitao, Ren, Yang, Tang, Mingxue, Qi, He, Deng, Shiqing, Zhang, Shujun, Chen, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897659/
https://www.ncbi.nlm.nih.gov/pubmed/36735779
http://dx.doi.org/10.1126/sciadv.ade7078
_version_ 1784882298319011840
author Luo, Huajie
Liu, Hui
Huang, Houbing
Song, Yu
Tucker, Matthew G.
Sun, Zheng
Yao, Yonghao
Gao, Baitao
Ren, Yang
Tang, Mingxue
Qi, He
Deng, Shiqing
Zhang, Shujun
Chen, Jun
author_facet Luo, Huajie
Liu, Hui
Huang, Houbing
Song, Yu
Tucker, Matthew G.
Sun, Zheng
Yao, Yonghao
Gao, Baitao
Ren, Yang
Tang, Mingxue
Qi, He
Deng, Shiqing
Zhang, Shujun
Chen, Jun
author_sort Luo, Huajie
collection PubMed
description Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi(0.5)Na(0.5)TiO(3) (BNT)–based ceramics. The incorporation of the hypothetical perovskite BaAlO(2.5) with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain.
format Online
Article
Text
id pubmed-9897659
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-98976592023-02-08 Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition Luo, Huajie Liu, Hui Huang, Houbing Song, Yu Tucker, Matthew G. Sun, Zheng Yao, Yonghao Gao, Baitao Ren, Yang Tang, Mingxue Qi, He Deng, Shiqing Zhang, Shujun Chen, Jun Sci Adv Physical and Materials Sciences Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi(0.5)Na(0.5)TiO(3) (BNT)–based ceramics. The incorporation of the hypothetical perovskite BaAlO(2.5) with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain. American Association for the Advancement of Science 2023-02-03 /pmc/articles/PMC9897659/ /pubmed/36735779 http://dx.doi.org/10.1126/sciadv.ade7078 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Luo, Huajie
Liu, Hui
Huang, Houbing
Song, Yu
Tucker, Matthew G.
Sun, Zheng
Yao, Yonghao
Gao, Baitao
Ren, Yang
Tang, Mingxue
Qi, He
Deng, Shiqing
Zhang, Shujun
Chen, Jun
Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
title Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
title_full Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
title_fullStr Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
title_full_unstemmed Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
title_short Achieving giant electrostrain of above 1% in (Bi,Na)TiO(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
title_sort achieving giant electrostrain of above 1% in (bi,na)tio(3)-based lead-free piezoelectrics via introducing oxygen-defect composition
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897659/
https://www.ncbi.nlm.nih.gov/pubmed/36735779
http://dx.doi.org/10.1126/sciadv.ade7078
work_keys_str_mv AT luohuajie achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT liuhui achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT huanghoubing achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT songyu achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT tuckermatthewg achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT sunzheng achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT yaoyonghao achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT gaobaitao achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT renyang achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT tangmingxue achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT qihe achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT dengshiqing achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT zhangshujun achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition
AT chenjun achievinggiantelectrostrainofabove1inbinatio3basedleadfreepiezoelectricsviaintroducingoxygendefectcomposition