Cargando…
Rational design of N-heterocyclic compound classes via regenerative cyclization of diamines
The discovery of reactions is a central topic in chemistry and especially interesting if access to compound classes, which have not yet been synthesized, is permitted. N-Heterocyclic compounds are very important due to their numerous applications in life and material science. We introduce here a con...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898245/ https://www.ncbi.nlm.nih.gov/pubmed/36737444 http://dx.doi.org/10.1038/s41467-023-36220-w |
Sumario: | The discovery of reactions is a central topic in chemistry and especially interesting if access to compound classes, which have not yet been synthesized, is permitted. N-Heterocyclic compounds are very important due to their numerous applications in life and material science. We introduce here a consecutive three-component reaction, classes of N-heterocyclic compounds, and the associated synthesis concept (regenerative cyclisation). Our reaction starts with a diamine, which reacts with an amino alcohol via dehydrogenation, condensation, and cyclisation to form a new pair of amines that undergoes ring closure with an aldehyde, carbonyldiimidazole, or a dehydrogenated amino alcohol. Hydrogen is liberated in the first reaction step and the dehydrogenation catalyst used is based on manganese. |
---|