Cargando…

Monolayer Kagome metals AV(3)Sb(5)

Recently, layered kagome metals AV(3)Sb(5) (A = K, Rb, and Cs) have emerged as a fertile platform for exploring frustrated geometry, correlations, and topology. Here, using first-principles and mean-field calculations, we demonstrate that AV(3)Sb(5) can crystallize in a mono-layered form, revealing...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sun-Woo, Oh, Hanbit, Moon, Eun-Gook, Kim, Youngkuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898313/
https://www.ncbi.nlm.nih.gov/pubmed/36737613
http://dx.doi.org/10.1038/s41467-023-36341-2
Descripción
Sumario:Recently, layered kagome metals AV(3)Sb(5) (A = K, Rb, and Cs) have emerged as a fertile platform for exploring frustrated geometry, correlations, and topology. Here, using first-principles and mean-field calculations, we demonstrate that AV(3)Sb(5) can crystallize in a mono-layered form, revealing a range of properties that render the system unique. Most importantly, the two-dimensional monolayer preserves intrinsically different symmetries from the three-dimensional layered bulk, enforced by stoichiometry. Consequently, the van Hove singularities, logarithmic divergences of the electronic density of states, are enriched, leading to a variety of competing instabilities such as doublets of charge density waves and s- and d-wave superconductivity. We show that the competition between orders can be fine-tuned in the monolayer via electron-filling of the van Hove singularities. Thus, our results suggest the monolayer kagome metal AV(3)Sb(5) as a promising platform for designer quantum phases.