Cargando…

Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network

The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pacheco, Jennifer A., Rasmussen, Luke V., Wiley, Ken, Person, Thomas Nate, Cronkite, David J., Sohn, Sunghwan, Murphy, Shawn, Gundelach, Justin H., Gainer, Vivian, Castro, Victor M., Liu, Cong, Mentch, Frank, Lingren, Todd, Sundaresan, Agnes S., Eickelberg, Garrett, Willis, Valerie, Furmanchuk, Al’ona, Patel, Roshan, Carrell, David S., Deng, Yu, Walton, Nephi, Satterfield, Benjamin A., Kullo, Iftikhar J., Dikilitas, Ozan, Smith, Joshua C., Peterson, Josh F., Shang, Ning, Kiryluk, Krzysztof, Ni, Yizhao, Li, Yikuan, Nadkarni, Girish N., Rosenthal, Elisabeth A., Walunas, Theresa L., Williams, Marc S., Karlson, Elizabeth W., Linder, Jodell E., Luo, Yuan, Weng, Chunhua, Wei, WeiQi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898520/
https://www.ncbi.nlm.nih.gov/pubmed/36737471
http://dx.doi.org/10.1038/s41598-023-27481-y
_version_ 1784882442179444736
author Pacheco, Jennifer A.
Rasmussen, Luke V.
Wiley, Ken
Person, Thomas Nate
Cronkite, David J.
Sohn, Sunghwan
Murphy, Shawn
Gundelach, Justin H.
Gainer, Vivian
Castro, Victor M.
Liu, Cong
Mentch, Frank
Lingren, Todd
Sundaresan, Agnes S.
Eickelberg, Garrett
Willis, Valerie
Furmanchuk, Al’ona
Patel, Roshan
Carrell, David S.
Deng, Yu
Walton, Nephi
Satterfield, Benjamin A.
Kullo, Iftikhar J.
Dikilitas, Ozan
Smith, Joshua C.
Peterson, Josh F.
Shang, Ning
Kiryluk, Krzysztof
Ni, Yizhao
Li, Yikuan
Nadkarni, Girish N.
Rosenthal, Elisabeth A.
Walunas, Theresa L.
Williams, Marc S.
Karlson, Elizabeth W.
Linder, Jodell E.
Luo, Yuan
Weng, Chunhua
Wei, WeiQi
author_facet Pacheco, Jennifer A.
Rasmussen, Luke V.
Wiley, Ken
Person, Thomas Nate
Cronkite, David J.
Sohn, Sunghwan
Murphy, Shawn
Gundelach, Justin H.
Gainer, Vivian
Castro, Victor M.
Liu, Cong
Mentch, Frank
Lingren, Todd
Sundaresan, Agnes S.
Eickelberg, Garrett
Willis, Valerie
Furmanchuk, Al’ona
Patel, Roshan
Carrell, David S.
Deng, Yu
Walton, Nephi
Satterfield, Benjamin A.
Kullo, Iftikhar J.
Dikilitas, Ozan
Smith, Joshua C.
Peterson, Josh F.
Shang, Ning
Kiryluk, Krzysztof
Ni, Yizhao
Li, Yikuan
Nadkarni, Girish N.
Rosenthal, Elisabeth A.
Walunas, Theresa L.
Williams, Marc S.
Karlson, Elizabeth W.
Linder, Jodell E.
Luo, Yuan
Weng, Chunhua
Wei, WeiQi
author_sort Pacheco, Jennifer A.
collection PubMed
description The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.
format Online
Article
Text
id pubmed-9898520
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98985202023-02-05 Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network Pacheco, Jennifer A. Rasmussen, Luke V. Wiley, Ken Person, Thomas Nate Cronkite, David J. Sohn, Sunghwan Murphy, Shawn Gundelach, Justin H. Gainer, Vivian Castro, Victor M. Liu, Cong Mentch, Frank Lingren, Todd Sundaresan, Agnes S. Eickelberg, Garrett Willis, Valerie Furmanchuk, Al’ona Patel, Roshan Carrell, David S. Deng, Yu Walton, Nephi Satterfield, Benjamin A. Kullo, Iftikhar J. Dikilitas, Ozan Smith, Joshua C. Peterson, Josh F. Shang, Ning Kiryluk, Krzysztof Ni, Yizhao Li, Yikuan Nadkarni, Girish N. Rosenthal, Elisabeth A. Walunas, Theresa L. Williams, Marc S. Karlson, Elizabeth W. Linder, Jodell E. Luo, Yuan Weng, Chunhua Wei, WeiQi Sci Rep Article The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations. Nature Publishing Group UK 2023-02-03 /pmc/articles/PMC9898520/ /pubmed/36737471 http://dx.doi.org/10.1038/s41598-023-27481-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Pacheco, Jennifer A.
Rasmussen, Luke V.
Wiley, Ken
Person, Thomas Nate
Cronkite, David J.
Sohn, Sunghwan
Murphy, Shawn
Gundelach, Justin H.
Gainer, Vivian
Castro, Victor M.
Liu, Cong
Mentch, Frank
Lingren, Todd
Sundaresan, Agnes S.
Eickelberg, Garrett
Willis, Valerie
Furmanchuk, Al’ona
Patel, Roshan
Carrell, David S.
Deng, Yu
Walton, Nephi
Satterfield, Benjamin A.
Kullo, Iftikhar J.
Dikilitas, Ozan
Smith, Joshua C.
Peterson, Josh F.
Shang, Ning
Kiryluk, Krzysztof
Ni, Yizhao
Li, Yikuan
Nadkarni, Girish N.
Rosenthal, Elisabeth A.
Walunas, Theresa L.
Williams, Marc S.
Karlson, Elizabeth W.
Linder, Jodell E.
Luo, Yuan
Weng, Chunhua
Wei, WeiQi
Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network
title Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network
title_full Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network
title_fullStr Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network
title_full_unstemmed Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network
title_short Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network
title_sort evaluation of the portability of computable phenotypes with natural language processing in the emerge network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898520/
https://www.ncbi.nlm.nih.gov/pubmed/36737471
http://dx.doi.org/10.1038/s41598-023-27481-y
work_keys_str_mv AT pachecojennifera evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT rasmussenlukev evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT wileyken evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT personthomasnate evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT cronkitedavidj evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT sohnsunghwan evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT murphyshawn evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT gundelachjustinh evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT gainervivian evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT castrovictorm evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT liucong evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT mentchfrank evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT lingrentodd evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT sundaresanagness evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT eickelberggarrett evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT willisvalerie evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT furmanchukalona evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT patelroshan evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT carrelldavids evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT dengyu evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT waltonnephi evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT satterfieldbenjamina evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT kulloiftikharj evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT dikilitasozan evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT smithjoshuac evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT petersonjoshf evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT shangning evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT kirylukkrzysztof evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT niyizhao evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT liyikuan evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT nadkarnigirishn evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT rosenthalelisabetha evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT walunastheresal evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT williamsmarcs evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT karlsonelizabethw evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT linderjodelle evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT luoyuan evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT wengchunhua evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork
AT weiweiqi evaluationoftheportabilityofcomputablephenotypeswithnaturallanguageprocessingintheemergenetwork