Cargando…
Learning local equivariant representations for large-scale atomistic dynamics
A simultaneously accurate and computationally efficient parametrization of the potential energy surface of molecules and materials is a long-standing goal in the natural sciences. While atom-centered message passing neural networks (MPNNs) have shown remarkable accuracy, their information propagatio...
Autores principales: | Musaelian, Albert, Batzner, Simon, Johansson, Anders, Sun, Lixin, Owen, Cameron J., Kornbluth, Mordechai, Kozinsky, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898554/ https://www.ncbi.nlm.nih.gov/pubmed/36737620 http://dx.doi.org/10.1038/s41467-023-36329-y |
Ejemplares similares
-
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
por: Batzner, Simon, et al.
Publicado: (2022) -
Equivariant analytic localization of group representations
por: Smithies, Laura
Publicado: (2001) -
Equivariant localization and holography
por: Zaffaroni, Alberto
Publicado: (2023) -
Understanding Image Representations by Measuring Their Equivariance and Equivalence
por: Lenc, Karel, et al.
Publicado: (2018) -
Equivariant multiplicities via representations of quantum affine algebras
por: Casbi, Elie, et al.
Publicado: (2022)