Cargando…
Dealing With Missing, Imbalanced, and Sparse Features During the Development of a Prediction Model for Sudden Death Using Emergency Medicine Data: Machine Learning Approach
BACKGROUND: In emergency departments (EDs), early diagnosis and timely rescue, which are supported by prediction modes using ED data, can increase patients’ chances of survival. Unfortunately, ED data usually contain missing, imbalanced, and sparse features, which makes it challenging to build early...
Autores principales: | Chen, Xiaojie, Chen, Han, Nan, Shan, Kong, Xiangtian, Duan, Huilong, Zhu, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898833/ https://www.ncbi.nlm.nih.gov/pubmed/36662548 http://dx.doi.org/10.2196/38590 |
Ejemplares similares
-
Classification of truck-involved crash severity: Dealing with missing, imbalanced, and high dimensional safety data
por: Mohammadpour, Seyed Iman, et al.
Publicado: (2023) -
Dealing with imbalanced and weakly labelled data in machine learning using fuzzy and rough set methods
por: Vluymans, Sarah
Publicado: (2018) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020) -
Sudden quench of harmonically trapped mass-imbalanced fermions
por: Nandy, Dillip K., et al.
Publicado: (2022) -
ECG-Based Identification of Sudden Cardiac Death through Sparse Representations
por: Velázquez-González, Josue R., et al.
Publicado: (2021)