Cargando…
Incorporating knowledge of disease-defining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare
BACKGROUND: Identifying candidates responsive to treatment is important in lupus nephritis (LN) at the renal flare (RF) because an effective treatment can lower the risk of progression to end-stage kidney disease. However, machine learning (ML)-based models that address this issue are lacking. METHO...
Autores principales: | Lee, Ding-Jie, Tsai, Ping-Huang, Chen, Chien-Chou, Dai, Yang-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898995/ https://www.ncbi.nlm.nih.gov/pubmed/36737814 http://dx.doi.org/10.1186/s12967-023-03931-z |
Ejemplares similares
-
Value of repeat biopsy in lupus nephritis flares
por: Greloni, G, et al.
Publicado: (2014) -
The value of repeat biopsy in lupus nephritis flares
por: Narváez, Javier, et al.
Publicado: (2017) -
Flares in Lupus Nephritis: Risk Factors and Strategies for Their Prevention
por: Banos, Aggelos, et al.
Publicado: (2023) -
Mesangial cell: A hub in lupus nephritis
por: Liu, Mengdi, et al.
Publicado: (2022) -
Lupus nephritis flare in young patients: relapse or nonadherence to treatment?
por: Rivera, Francisco, et al.
Publicado: (2014)