Cargando…

A coupled algebraic-delay differential system modeling tick-host interactive behavioural dynamics and multi-stability

We propose a coupled system of delay-algebraic equations to describe tick attaching and host grooming behaviors in the tick-host interface, and use the model to understand how this tick-host interaction impacts the tick population dynamics. We consider two critical state variables, the loads of feed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xue, Wu, Jianhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899201/
https://www.ncbi.nlm.nih.gov/pubmed/36738356
http://dx.doi.org/10.1007/s00285-023-01879-8
Descripción
Sumario:We propose a coupled system of delay-algebraic equations to describe tick attaching and host grooming behaviors in the tick-host interface, and use the model to understand how this tick-host interaction impacts the tick population dynamics. We consider two critical state variables, the loads of feeding ticks on host and the engorged ticks on the ground for ticks in a particular development stage (nymphal stage) and show that the model as a coupled system of delay differential equation and an algebraic (integral) equation may have rich structures of equilibrium states, leading to multi-stability. We perform asymptotic analyses and use the implicit function theorem to characterize the stability of these equilibrium states, and show that bi-stability and quadri-stability occur naturally in several combinations of tick attaching and host grooming behaviours. In particular, we show that in the case when host grooming is triggered by the tick biting, the system will have three stable equilibrium states including the extinction state, and two unstable equilibrium states. In addition, the two nontrivial stable equilibrium states correspond to a low attachment rate and a large number of feeding ticks, and a high attachment rate and a small number of feeding ticks, respectively.