Cargando…

Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort

High-throughput extraction of radiomic features from low-dose CT scans can characterize the heterogeneity of the lung parenchyma and potentially aid in identifying subpopulations that may have higher risk of lung diseases, such as COPD, and lung cancer due to inflammation or obstruction of the airwa...

Descripción completa

Detalles Bibliográficos
Autores principales: Haghighi, Babak, Horng, Hannah, Noël, Peter B., Cohen, Eric A., Pantalone, Lauren, Vachani, Anil, Rendle, Katharine A., Wainwright, Jocelyn, Saia, Chelsea, Shinohara, Russel T., Barbosa, Eduardo Mortani, Kontos, Despina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899203/
https://www.ncbi.nlm.nih.gov/pubmed/36739358
http://dx.doi.org/10.1038/s41598-023-29058-1
_version_ 1784882591792365568
author Haghighi, Babak
Horng, Hannah
Noël, Peter B.
Cohen, Eric A.
Pantalone, Lauren
Vachani, Anil
Rendle, Katharine A.
Wainwright, Jocelyn
Saia, Chelsea
Shinohara, Russel T.
Barbosa, Eduardo Mortani
Kontos, Despina
author_facet Haghighi, Babak
Horng, Hannah
Noël, Peter B.
Cohen, Eric A.
Pantalone, Lauren
Vachani, Anil
Rendle, Katharine A.
Wainwright, Jocelyn
Saia, Chelsea
Shinohara, Russel T.
Barbosa, Eduardo Mortani
Kontos, Despina
author_sort Haghighi, Babak
collection PubMed
description High-throughput extraction of radiomic features from low-dose CT scans can characterize the heterogeneity of the lung parenchyma and potentially aid in identifying subpopulations that may have higher risk of lung diseases, such as COPD, and lung cancer due to inflammation or obstruction of the airways. We aim to determine the feasibility of a lung radiomics phenotyping approach in a lung cancer screening cohort, while quantifying the effect of different CT reconstruction algorithms on phenotype robustness. We identified low-dose CT scans (n = 308) acquired with Siemens Healthineers scanners from patients who completed low-dose CT within our lung cancer screening program between 2015 and 2018 and had two different sets of image reconstructions kernel available (i.e., medium (I30f.), sharp (I50f.)) for the same acquisition. Following segmentation of the lung field, a total of 26 radiomic features were extracted from the entire 3D lung-field using a previously validated fully-automated lattice-based software pipeline, adapted for low-dose CT scans. The lattice in-house software was used to extract features including gray-level histogram, co-occurrence, and run-length descriptors. The lattice approach uses non-overlapping windows for traversing along pixels of images and calculates different features. Each feature was averaged for each scan within a range of lattice window sizes (W) of 4, 8 and 20 mm. The extracted imaging features from both datasets were harmonized to correct for differences in image acquisition parameters. Subsequently, unsupervised hierarchical clustering was applied on the extracted features to identify distinct phenotypic patterns of the lung parenchyma, where consensus clustering was used to identify the optimal number of clusters (K = 2). Differences between phenotypes for demographic and clinical covariates including sex, age, BMI, pack-years of smoking, Lung-RADS and cancer diagnosis were assessed for each phenotype cluster, and then compared across clusters for the two different CT reconstruction algorithms using the cluster entanglement metric, where a lower entanglement coefficient corresponds to good cluster alignment. Furthermore, an independent set of low-dose CT scans (n = 88) from patients with available pulmonary function data on lung obstruction were analyzed using the identified optimal clusters to assess associations to lung obstruction and validate the lung phenotyping paradigm. Heatmaps generated by radiomic features identified two distinct lung parenchymal phenotype patterns across different feature extraction window sizes, for both reconstruction algorithms (P < 0.05 with K = 2). Associations of radiomic-based clusters with clinical covariates showed significant differences for BMI and pack-years of smoking (P < 0.05) for both reconstruction kernels. Radiomic phenotype patterns were more similar across the two reconstructed kernels, when smaller window sizes (W = 4 and 8 mm) were used for radiomic feature extraction, as deemed by their entanglement coefficient. Validation of clustering approaches using cluster mapping for the independent sample with lung obstruction also showed two statistically significant phenotypes (P < 0.05) with significant difference for BMI and smoking pack-years. Radiomic analysis can be used to characterize lung parenchymal phenotypes from low-dose CT scans, which appear reproducible for different reconstruction kernels. Further work should seek to evaluate the effect of additional CT acquisition parameters and validate these phenotypes in characterizing lung cancer screening populations, to potentially better stratify disease patterns and cancer risk.
format Online
Article
Text
id pubmed-9899203
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98992032023-02-06 Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort Haghighi, Babak Horng, Hannah Noël, Peter B. Cohen, Eric A. Pantalone, Lauren Vachani, Anil Rendle, Katharine A. Wainwright, Jocelyn Saia, Chelsea Shinohara, Russel T. Barbosa, Eduardo Mortani Kontos, Despina Sci Rep Article High-throughput extraction of radiomic features from low-dose CT scans can characterize the heterogeneity of the lung parenchyma and potentially aid in identifying subpopulations that may have higher risk of lung diseases, such as COPD, and lung cancer due to inflammation or obstruction of the airways. We aim to determine the feasibility of a lung radiomics phenotyping approach in a lung cancer screening cohort, while quantifying the effect of different CT reconstruction algorithms on phenotype robustness. We identified low-dose CT scans (n = 308) acquired with Siemens Healthineers scanners from patients who completed low-dose CT within our lung cancer screening program between 2015 and 2018 and had two different sets of image reconstructions kernel available (i.e., medium (I30f.), sharp (I50f.)) for the same acquisition. Following segmentation of the lung field, a total of 26 radiomic features were extracted from the entire 3D lung-field using a previously validated fully-automated lattice-based software pipeline, adapted for low-dose CT scans. The lattice in-house software was used to extract features including gray-level histogram, co-occurrence, and run-length descriptors. The lattice approach uses non-overlapping windows for traversing along pixels of images and calculates different features. Each feature was averaged for each scan within a range of lattice window sizes (W) of 4, 8 and 20 mm. The extracted imaging features from both datasets were harmonized to correct for differences in image acquisition parameters. Subsequently, unsupervised hierarchical clustering was applied on the extracted features to identify distinct phenotypic patterns of the lung parenchyma, where consensus clustering was used to identify the optimal number of clusters (K = 2). Differences between phenotypes for demographic and clinical covariates including sex, age, BMI, pack-years of smoking, Lung-RADS and cancer diagnosis were assessed for each phenotype cluster, and then compared across clusters for the two different CT reconstruction algorithms using the cluster entanglement metric, where a lower entanglement coefficient corresponds to good cluster alignment. Furthermore, an independent set of low-dose CT scans (n = 88) from patients with available pulmonary function data on lung obstruction were analyzed using the identified optimal clusters to assess associations to lung obstruction and validate the lung phenotyping paradigm. Heatmaps generated by radiomic features identified two distinct lung parenchymal phenotype patterns across different feature extraction window sizes, for both reconstruction algorithms (P < 0.05 with K = 2). Associations of radiomic-based clusters with clinical covariates showed significant differences for BMI and pack-years of smoking (P < 0.05) for both reconstruction kernels. Radiomic phenotype patterns were more similar across the two reconstructed kernels, when smaller window sizes (W = 4 and 8 mm) were used for radiomic feature extraction, as deemed by their entanglement coefficient. Validation of clustering approaches using cluster mapping for the independent sample with lung obstruction also showed two statistically significant phenotypes (P < 0.05) with significant difference for BMI and smoking pack-years. Radiomic analysis can be used to characterize lung parenchymal phenotypes from low-dose CT scans, which appear reproducible for different reconstruction kernels. Further work should seek to evaluate the effect of additional CT acquisition parameters and validate these phenotypes in characterizing lung cancer screening populations, to potentially better stratify disease patterns and cancer risk. Nature Publishing Group UK 2023-02-04 /pmc/articles/PMC9899203/ /pubmed/36739358 http://dx.doi.org/10.1038/s41598-023-29058-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Haghighi, Babak
Horng, Hannah
Noël, Peter B.
Cohen, Eric A.
Pantalone, Lauren
Vachani, Anil
Rendle, Katharine A.
Wainwright, Jocelyn
Saia, Chelsea
Shinohara, Russel T.
Barbosa, Eduardo Mortani
Kontos, Despina
Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
title Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
title_full Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
title_fullStr Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
title_full_unstemmed Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
title_short Radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
title_sort radiomic phenotyping of the lung parenchyma in a lung cancer screening cohort
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899203/
https://www.ncbi.nlm.nih.gov/pubmed/36739358
http://dx.doi.org/10.1038/s41598-023-29058-1
work_keys_str_mv AT haghighibabak radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT hornghannah radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT noelpeterb radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT cohenerica radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT pantalonelauren radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT vachanianil radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT rendlekatharinea radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT wainwrightjocelyn radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT saiachelsea radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT shinohararusselt radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT barbosaeduardomortani radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort
AT kontosdespina radiomicphenotypingofthelungparenchymainalungcancerscreeningcohort