Cargando…
Annotated Datasets of Oil Palm Fruit Bunch Piles for Ripeness Grading Using Deep Learning
The quality of palm oil is strongly influenced by the maturity level of the fruit to be processed into palm oil. Many studies have been carried out for detecting and classifying the maturity level of oil palm fruit to improve the quality with the use of computer vision. However, most of these studie...
Autores principales: | Suharjito, Junior, Franz Adeta, Koeswandy, Yosua Putra, Debi, Nurhayati, Pratiwi Wahyu, Asrol, Muhammad, Marimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899224/ https://www.ncbi.nlm.nih.gov/pubmed/36739292 http://dx.doi.org/10.1038/s41597-023-01958-x |
Ejemplares similares
-
Video based oil palm ripeness detection model using deep learning
por: Junior, Franz Adeta, et al.
Publicado: (2023) -
Palm oil-based bioenergy sustainability and policy in Indonesia and Malaysia: A systematic review and future agendas
por: Papilo, Petir, et al.
Publicado: (2022) -
Institutional strengthening model of oil palm independent smallholder in Riau and Jambi Provinces, Indonesia
por: Raharja, Sapta, et al.
Publicado: (2020) -
Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch
por: Fadilah, Norasyikin, et al.
Publicado: (2012) -
An annotated dataset of bioacoustic sensing and features of mosquitoes
por: Vasconcelos, Dinarte, et al.
Publicado: (2020)