Cargando…

Parametric study of pulsed nanosecond laser interaction with carbon-nanotube composite bipolar plate for PEMFCs

A laser processing technique is proposed for the processing of a 2.5 mm thick carbon nanotube (CNT) composite bipolar plate for proton exchange membrane fuel cells (PEMFCs). This study aims to understand laser interaction with the CNT composite plate experimentally using a pulsed nanosecond laser. P...

Descripción completa

Detalles Bibliográficos
Autores principales: Musse, Dawit, Lee, Dongkyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899249/
https://www.ncbi.nlm.nih.gov/pubmed/36739359
http://dx.doi.org/10.1038/s41598-023-28700-2
Descripción
Sumario:A laser processing technique is proposed for the processing of a 2.5 mm thick carbon nanotube (CNT) composite bipolar plate for proton exchange membrane fuel cells (PEMFCs). This study aims to understand laser interaction with the CNT composite plate experimentally using a pulsed nanosecond laser. Penetration depth, top width, spatter width, and overall physical morphologies are studied. Scanning electron microscope (SEM) and 3D Scanning Confocal Microscope were used for observation and measurements. Based on that, a parametric investigation is conducted and reported systematically. Most importantly, the pulse repetition rate presents a unique nature of interaction that resulted in a critical repetition rate distinguishing three operational regimes. The physical and chemical properties of the regimes are further analyzed by Vickers microhardness testing and energy dispersive X-ray (EDX) analyses performed on the surface and cross-section of each specimen. The results reveal that the pulse repetition rate introduces changes in mechanical properties and chemical compositions in the vicinity of the processed region. In conclusion, lower pulse repetition should be favored for less impact on mechanical properties, chemical composition, and morphological aspects.