Cargando…

A framework for improving wheat spike development and yield based on the master regulatory TOR and SnRK gene systems

The low rates of yield gain in wheat breeding programs create an ominous situation for the world. Amongst the reasons for this low rate are issues manifested in spike development that result in too few spikelets, fertile florets, and therefore grains being produced. Phases in spike development are p...

Descripción completa

Detalles Bibliográficos
Autor principal: Flavell, Richard B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899413/
https://www.ncbi.nlm.nih.gov/pubmed/36477879
http://dx.doi.org/10.1093/jxb/erac469
Descripción
Sumario:The low rates of yield gain in wheat breeding programs create an ominous situation for the world. Amongst the reasons for this low rate are issues manifested in spike development that result in too few spikelets, fertile florets, and therefore grains being produced. Phases in spike development are particularly sensitive to stresses of various kinds and origins, and these are partly responsible for the deficiencies in grain production and slow rates of gain in yield. The diversity of developmental processes, stresses, and the large numbers of genes involved make it particularly difficult to prioritize approaches in breeding programs without an overarching, mechanistic framework. Such a framework, introduced here, is provided around the master regulator target of rapamycin and sucrose non-fermenting-1 (SNF1)-related protein kinase complexes and their control by trehalose-6-phosphate and other molecules. Being master regulators of the balance between growth and growth inhibition under stress, these provide genetic targets for creating breakthroughs in yield enhancement. Examples of potential targets and experimental approaches are described.