Cargando…
Population pharmacokinetics of FCN-159, a MEK1/2 inhibitor, in adult patients with advanced melanoma and neurofibromatosis type 1 (NF1) and model informed dosing recommendations for NF1 pediatrics
Objective: FCN-159 is a highly active mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) inhibitor in patients with advanced melanoma and neurofibromatosis type 1 (NF1). We report a population pharmacokinetic (PopPK) model-based analysis of FCN-159 and its application to inform dos...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899833/ https://www.ncbi.nlm.nih.gov/pubmed/36755948 http://dx.doi.org/10.3389/fphar.2023.1101991 |
Sumario: | Objective: FCN-159 is a highly active mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) inhibitor in patients with advanced melanoma and neurofibromatosis type 1 (NF1). We report a population pharmacokinetic (PopPK) model-based analysis of FCN-159 and its application to inform dose selection for NF1 pediatric trials. Methods: PK data collected from patients with advanced melanoma and NF1 in two clinical studies (NCT03932253 and NCT04954001) were analyzed using a non-linear mixed effects model. The adult model was adapted by incorporating allometric scaling for PK projection in 2–17 years old children. Pediatric exposure in different body surface area (BSA) bins was simulated to identify nominal doses (i.e., dose amounts given as integers) and BSA bin cutoffs to achieve exposure comparable to adults’ optimal exposure across the entire pediatric BSA range. Results: The final dataset consisted of 45 subjects with a total of 1030 PK samples. The PK of FCN-159 was well-described by a 2-compartment model with first-order linear elimination and delayed first-order absorption. Covariates, including BSA, age, sex, albumin, total protein, and cancer type, were identified as statistically significant predictors of FCN-159 disposition. Simulations based on the final model projected daily doses of 4 mg/m(2) QD with optimized BSA bin cutoffs would allow fixed nominal doses within each bin and result in steady state exposure approximating the adult exposure observed at the recommended phase 2 dose (RP2D) in NF1, which is 8 mg QD. Conclusion: The developed population PK model adequately described the PK profile of FCN-159, which was adapted using allometric scaling to inform dose selection for NF1 pediatric trials. |
---|