Cargando…

Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients

INTRODUCTION: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer...

Descripción completa

Detalles Bibliográficos
Autores principales: Prelaj, Arsela, Galli, Edoardo Gregorio, Miskovic, Vanja, Pesenti, Mattia, Viscardi, Giuseppe, Pedica, Benedetta, Mazzeo, Laura, Bottiglieri, Achille, Provenzano, Leonardo, Spagnoletti, Andrea, Marinacci, Roberto, De Toma, Alessandro, Proto, Claudia, Ferrara, Roberto, Brambilla, Marta, Occhipinti, Mario, Manglaviti, Sara, Galli, Giulia, Signorelli, Diego, Giani, Claudia, Beninato, Teresa, Pircher, Chiara Carlotta, Rametta, Alessandro, Kosta, Sokol, Zanitti, Michele, Di Mauro, Maria Rosa, Rinaldi, Arturo, Di Gregorio, Settimio, Antonia, Martinetti, Garassino, Marina Chiara, de Braud, Filippo G. M., Restelli, Marcello, Lo Russo, Giuseppe, Ganzinelli, Monica, Trovò, Francesco, Pedrocchi, Alessandra Laura Giulia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899835/
https://www.ncbi.nlm.nih.gov/pubmed/36755856
http://dx.doi.org/10.3389/fonc.2022.1078822
_version_ 1784882718484463616
author Prelaj, Arsela
Galli, Edoardo Gregorio
Miskovic, Vanja
Pesenti, Mattia
Viscardi, Giuseppe
Pedica, Benedetta
Mazzeo, Laura
Bottiglieri, Achille
Provenzano, Leonardo
Spagnoletti, Andrea
Marinacci, Roberto
De Toma, Alessandro
Proto, Claudia
Ferrara, Roberto
Brambilla, Marta
Occhipinti, Mario
Manglaviti, Sara
Galli, Giulia
Signorelli, Diego
Giani, Claudia
Beninato, Teresa
Pircher, Chiara Carlotta
Rametta, Alessandro
Kosta, Sokol
Zanitti, Michele
Di Mauro, Maria Rosa
Rinaldi, Arturo
Di Gregorio, Settimio
Antonia, Martinetti
Garassino, Marina Chiara
de Braud, Filippo G. M.
Restelli, Marcello
Lo Russo, Giuseppe
Ganzinelli, Monica
Trovò, Francesco
Pedrocchi, Alessandra Laura Giulia
author_facet Prelaj, Arsela
Galli, Edoardo Gregorio
Miskovic, Vanja
Pesenti, Mattia
Viscardi, Giuseppe
Pedica, Benedetta
Mazzeo, Laura
Bottiglieri, Achille
Provenzano, Leonardo
Spagnoletti, Andrea
Marinacci, Roberto
De Toma, Alessandro
Proto, Claudia
Ferrara, Roberto
Brambilla, Marta
Occhipinti, Mario
Manglaviti, Sara
Galli, Giulia
Signorelli, Diego
Giani, Claudia
Beninato, Teresa
Pircher, Chiara Carlotta
Rametta, Alessandro
Kosta, Sokol
Zanitti, Michele
Di Mauro, Maria Rosa
Rinaldi, Arturo
Di Gregorio, Settimio
Antonia, Martinetti
Garassino, Marina Chiara
de Braud, Filippo G. M.
Restelli, Marcello
Lo Russo, Giuseppe
Ganzinelli, Monica
Trovò, Francesco
Pedrocchi, Alessandra Laura Giulia
author_sort Prelaj, Arsela
collection PubMed
description INTRODUCTION: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods. METHODS: We prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions. RESULTS: Of 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR. CONCLUSIONS: In this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients.
format Online
Article
Text
id pubmed-9899835
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98998352023-02-07 Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients Prelaj, Arsela Galli, Edoardo Gregorio Miskovic, Vanja Pesenti, Mattia Viscardi, Giuseppe Pedica, Benedetta Mazzeo, Laura Bottiglieri, Achille Provenzano, Leonardo Spagnoletti, Andrea Marinacci, Roberto De Toma, Alessandro Proto, Claudia Ferrara, Roberto Brambilla, Marta Occhipinti, Mario Manglaviti, Sara Galli, Giulia Signorelli, Diego Giani, Claudia Beninato, Teresa Pircher, Chiara Carlotta Rametta, Alessandro Kosta, Sokol Zanitti, Michele Di Mauro, Maria Rosa Rinaldi, Arturo Di Gregorio, Settimio Antonia, Martinetti Garassino, Marina Chiara de Braud, Filippo G. M. Restelli, Marcello Lo Russo, Giuseppe Ganzinelli, Monica Trovò, Francesco Pedrocchi, Alessandra Laura Giulia Front Oncol Oncology INTRODUCTION: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods. METHODS: We prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions. RESULTS: Of 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR. CONCLUSIONS: In this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. Frontiers Media S.A. 2023-01-23 /pmc/articles/PMC9899835/ /pubmed/36755856 http://dx.doi.org/10.3389/fonc.2022.1078822 Text en Copyright © 2023 Prelaj, Galli, Miskovic, Pesenti, Viscardi, Pedica, Mazzeo, Bottiglieri, Provenzano, Spagnoletti, Marinacci, De Toma, Proto, Ferrara, Brambilla, Occhipinti, Manglaviti, Galli, Signorelli, Giani, Beninato, Pircher, Rametta, Kosta, Zanitti, Di Mauro, Rinaldi, Di Gregorio, Antonia, Garassino, de Braud, Restelli, Lo Russo, Ganzinelli, Trovò and Pedrocchi https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Prelaj, Arsela
Galli, Edoardo Gregorio
Miskovic, Vanja
Pesenti, Mattia
Viscardi, Giuseppe
Pedica, Benedetta
Mazzeo, Laura
Bottiglieri, Achille
Provenzano, Leonardo
Spagnoletti, Andrea
Marinacci, Roberto
De Toma, Alessandro
Proto, Claudia
Ferrara, Roberto
Brambilla, Marta
Occhipinti, Mario
Manglaviti, Sara
Galli, Giulia
Signorelli, Diego
Giani, Claudia
Beninato, Teresa
Pircher, Chiara Carlotta
Rametta, Alessandro
Kosta, Sokol
Zanitti, Michele
Di Mauro, Maria Rosa
Rinaldi, Arturo
Di Gregorio, Settimio
Antonia, Martinetti
Garassino, Marina Chiara
de Braud, Filippo G. M.
Restelli, Marcello
Lo Russo, Giuseppe
Ganzinelli, Monica
Trovò, Francesco
Pedrocchi, Alessandra Laura Giulia
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
title Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
title_full Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
title_fullStr Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
title_full_unstemmed Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
title_short Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
title_sort real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in nsclc patients
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899835/
https://www.ncbi.nlm.nih.gov/pubmed/36755856
http://dx.doi.org/10.3389/fonc.2022.1078822
work_keys_str_mv AT prelajarsela realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT galliedoardogregorio realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT miskovicvanja realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT pesentimattia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT viscardigiuseppe realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT pedicabenedetta realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT mazzeolaura realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT bottiglieriachille realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT provenzanoleonardo realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT spagnolettiandrea realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT marinacciroberto realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT detomaalessandro realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT protoclaudia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT ferrararoberto realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT brambillamarta realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT occhipintimario realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT manglavitisara realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT galligiulia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT signorellidiego realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT gianiclaudia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT beninatoteresa realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT pircherchiaracarlotta realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT ramettaalessandro realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT kostasokol realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT zanittimichele realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT dimauromariarosa realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT rinaldiarturo realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT digregoriosettimio realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT antoniamartinetti realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT garassinomarinachiara realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT debraudfilippogm realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT restellimarcello realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT lorussogiuseppe realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT ganzinellimonica realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT trovofrancesco realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients
AT pedrocchialessandralauragiulia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients