Cargando…
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
INTRODUCTION: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899835/ https://www.ncbi.nlm.nih.gov/pubmed/36755856 http://dx.doi.org/10.3389/fonc.2022.1078822 |
_version_ | 1784882718484463616 |
---|---|
author | Prelaj, Arsela Galli, Edoardo Gregorio Miskovic, Vanja Pesenti, Mattia Viscardi, Giuseppe Pedica, Benedetta Mazzeo, Laura Bottiglieri, Achille Provenzano, Leonardo Spagnoletti, Andrea Marinacci, Roberto De Toma, Alessandro Proto, Claudia Ferrara, Roberto Brambilla, Marta Occhipinti, Mario Manglaviti, Sara Galli, Giulia Signorelli, Diego Giani, Claudia Beninato, Teresa Pircher, Chiara Carlotta Rametta, Alessandro Kosta, Sokol Zanitti, Michele Di Mauro, Maria Rosa Rinaldi, Arturo Di Gregorio, Settimio Antonia, Martinetti Garassino, Marina Chiara de Braud, Filippo G. M. Restelli, Marcello Lo Russo, Giuseppe Ganzinelli, Monica Trovò, Francesco Pedrocchi, Alessandra Laura Giulia |
author_facet | Prelaj, Arsela Galli, Edoardo Gregorio Miskovic, Vanja Pesenti, Mattia Viscardi, Giuseppe Pedica, Benedetta Mazzeo, Laura Bottiglieri, Achille Provenzano, Leonardo Spagnoletti, Andrea Marinacci, Roberto De Toma, Alessandro Proto, Claudia Ferrara, Roberto Brambilla, Marta Occhipinti, Mario Manglaviti, Sara Galli, Giulia Signorelli, Diego Giani, Claudia Beninato, Teresa Pircher, Chiara Carlotta Rametta, Alessandro Kosta, Sokol Zanitti, Michele Di Mauro, Maria Rosa Rinaldi, Arturo Di Gregorio, Settimio Antonia, Martinetti Garassino, Marina Chiara de Braud, Filippo G. M. Restelli, Marcello Lo Russo, Giuseppe Ganzinelli, Monica Trovò, Francesco Pedrocchi, Alessandra Laura Giulia |
author_sort | Prelaj, Arsela |
collection | PubMed |
description | INTRODUCTION: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods. METHODS: We prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions. RESULTS: Of 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR. CONCLUSIONS: In this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. |
format | Online Article Text |
id | pubmed-9899835 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98998352023-02-07 Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients Prelaj, Arsela Galli, Edoardo Gregorio Miskovic, Vanja Pesenti, Mattia Viscardi, Giuseppe Pedica, Benedetta Mazzeo, Laura Bottiglieri, Achille Provenzano, Leonardo Spagnoletti, Andrea Marinacci, Roberto De Toma, Alessandro Proto, Claudia Ferrara, Roberto Brambilla, Marta Occhipinti, Mario Manglaviti, Sara Galli, Giulia Signorelli, Diego Giani, Claudia Beninato, Teresa Pircher, Chiara Carlotta Rametta, Alessandro Kosta, Sokol Zanitti, Michele Di Mauro, Maria Rosa Rinaldi, Arturo Di Gregorio, Settimio Antonia, Martinetti Garassino, Marina Chiara de Braud, Filippo G. M. Restelli, Marcello Lo Russo, Giuseppe Ganzinelli, Monica Trovò, Francesco Pedrocchi, Alessandra Laura Giulia Front Oncol Oncology INTRODUCTION: Artificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods. METHODS: We prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions. RESULTS: Of 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR. CONCLUSIONS: In this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. Frontiers Media S.A. 2023-01-23 /pmc/articles/PMC9899835/ /pubmed/36755856 http://dx.doi.org/10.3389/fonc.2022.1078822 Text en Copyright © 2023 Prelaj, Galli, Miskovic, Pesenti, Viscardi, Pedica, Mazzeo, Bottiglieri, Provenzano, Spagnoletti, Marinacci, De Toma, Proto, Ferrara, Brambilla, Occhipinti, Manglaviti, Galli, Signorelli, Giani, Beninato, Pircher, Rametta, Kosta, Zanitti, Di Mauro, Rinaldi, Di Gregorio, Antonia, Garassino, de Braud, Restelli, Lo Russo, Ganzinelli, Trovò and Pedrocchi https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Prelaj, Arsela Galli, Edoardo Gregorio Miskovic, Vanja Pesenti, Mattia Viscardi, Giuseppe Pedica, Benedetta Mazzeo, Laura Bottiglieri, Achille Provenzano, Leonardo Spagnoletti, Andrea Marinacci, Roberto De Toma, Alessandro Proto, Claudia Ferrara, Roberto Brambilla, Marta Occhipinti, Mario Manglaviti, Sara Galli, Giulia Signorelli, Diego Giani, Claudia Beninato, Teresa Pircher, Chiara Carlotta Rametta, Alessandro Kosta, Sokol Zanitti, Michele Di Mauro, Maria Rosa Rinaldi, Arturo Di Gregorio, Settimio Antonia, Martinetti Garassino, Marina Chiara de Braud, Filippo G. M. Restelli, Marcello Lo Russo, Giuseppe Ganzinelli, Monica Trovò, Francesco Pedrocchi, Alessandra Laura Giulia Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
title | Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
title_full | Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
title_fullStr | Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
title_full_unstemmed | Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
title_short | Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
title_sort | real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in nsclc patients |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899835/ https://www.ncbi.nlm.nih.gov/pubmed/36755856 http://dx.doi.org/10.3389/fonc.2022.1078822 |
work_keys_str_mv | AT prelajarsela realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT galliedoardogregorio realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT miskovicvanja realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT pesentimattia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT viscardigiuseppe realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT pedicabenedetta realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT mazzeolaura realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT bottiglieriachille realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT provenzanoleonardo realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT spagnolettiandrea realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT marinacciroberto realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT detomaalessandro realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT protoclaudia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT ferrararoberto realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT brambillamarta realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT occhipintimario realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT manglavitisara realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT galligiulia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT signorellidiego realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT gianiclaudia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT beninatoteresa realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT pircherchiaracarlotta realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT ramettaalessandro realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT kostasokol realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT zanittimichele realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT dimauromariarosa realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT rinaldiarturo realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT digregoriosettimio realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT antoniamartinetti realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT garassinomarinachiara realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT debraudfilippogm realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT restellimarcello realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT lorussogiuseppe realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT ganzinellimonica realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT trovofrancesco realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients AT pedrocchialessandralauragiulia realworlddatatobuildexplainabletrustworthyartificialintelligencemodelsforpredictionofimmunotherapyefficacyinnsclcpatients |