Cargando…
Multimodal bipedal locomotion generation with passive dynamics via deep reinforcement learning
Generating multimodal locomotion in underactuated bipedal robots requires control solutions that can facilitate motion patterns for drastically different dynamical modes, which is an extremely challenging problem in locomotion-learning tasks. Also, in such multimodal locomotion, utilizing body morph...
Autores principales: | Koseki, Shunsuke, Kutsuzawa, Kyo, Owaki, Dai, Hayashibe, Mitsuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899902/ https://www.ncbi.nlm.nih.gov/pubmed/36756534 http://dx.doi.org/10.3389/fnbot.2022.1054239 |
Ejemplares similares
-
Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning
por: Ahmed, Muhammad Hannan, et al.
Publicado: (2023) -
Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics
por: Wang, Zhicheng, et al.
Publicado: (2022) -
Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning
por: Zheng, Chu, et al.
Publicado: (2022) -
Editorial: Assessing Bipedal Locomotion: Towards Replicable Benchmarks for Robotic and Robot-Assisted Locomotion
por: Torricelli, Diego, et al.
Publicado: (2019) -
Motor synergy generalization framework for new targets in multi-planar and multi-directional reaching task
por: Kutsuzawa, Kyo, et al.
Publicado: (2022)