Cargando…
Validation of a deep neural network-based algorithm supporting clinical management of adnexal mass
BACKGROUND: Conservative management of adnexal mass is warranted when there is imaging-based and clinical evidence of benign characteristics. Malignancy risk is, however, a concern due to the mortality rate of ovarian cancer. Malignancy occurs in 10–15% of adnexal masses that go to surgery, whereas...
Autores principales: | Reilly, Gerard P., Dunton, Charles J., Bullock, Rowan G., Ure, Daniel R., Fritsche, Herbert, Ghosh, Srinka, Pappas, Todd C., Phan, Ryan T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900123/ https://www.ncbi.nlm.nih.gov/pubmed/36756174 http://dx.doi.org/10.3389/fmed.2023.1102437 |
Ejemplares similares
-
Analytical Validation of a Deep Neural Network Algorithm for the Detection of Ovarian Cancer
por: Reilly, Gerard, et al.
Publicado: (2022) -
Multivariate Index Assay Is Superior to CA125 and HE4 Testing in Detection of Ovarian Malignancy in African-American Women
por: Dunton, Charles, et al.
Publicado: (2019) -
Management of the Adnexal Mass: Considerations for the Family Medicine Physician
por: Bullock, Brian, et al.
Publicado: (2022) -
A Deep Learning Model System for Diagnosis and Management of Adnexal Masses
por: Li, Jianan, et al.
Publicado: (2022) -
Endoscopic Management of Adnexal Masses
por: Mettler, Liselotte, et al.
Publicado: (1997)