Cargando…
A connection between survival multistate models and causal inference for external treatment interruptions
Recently, treatment interruptions such as a clinical hold in randomized clinical trials have been investigated by using a multistate model approach. The phase III clinical trial START (Stimulating Targeted Antigenic Response To non-small-cell cancer) with primary endpoint overall survival was tempor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900139/ https://www.ncbi.nlm.nih.gov/pubmed/36464917 http://dx.doi.org/10.1177/09622802221133551 |
Sumario: | Recently, treatment interruptions such as a clinical hold in randomized clinical trials have been investigated by using a multistate model approach. The phase III clinical trial START (Stimulating Targeted Antigenic Response To non-small-cell cancer) with primary endpoint overall survival was temporarily placed on hold for enrollment and treatment by the US Food and Drug Administration (FDA). Multistate models provide a flexible framework to account for treatment interruptions induced by a time-dependent external covariate. Extending previous work, we propose a censoring and a filtering approach both aimed at estimating the initial treatment effect on overall survival in the hypothetical situation of no clinical hold. A special focus is on creating a link to causal inference. We show that calculating the matrix of transition probabilities in the multistate model after application of censoring (or filtering) yields the desired causal interpretation. Assumptions in support of the identification of a causal effect by censoring (or filtering) are discussed. Thus, we provide the basis to apply causal censoring (or filtering) in more general settings such as the COVID-19 pandemic. A simulation study demonstrates that both causal censoring and filtering perform favorably compared to a naïve method ignoring the external impact. |
---|